This file is indexed.

/usr/include/m4rie/mzd_poly.h is in libm4rie-dev 20140914-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/**
 * \file mzd_poly.h
 *
 * \brief Matrices over \GF2[x]
 *
 * @warning This code is experimental.
 */

#ifndef M4RIE_MZD_POLY_H
#define M4RIE_MZD_POLY_H

/******************************************************************************
*
*            M4RIE: Linear Algebra over GF(2^e)
*
*    Copyright (C) 2011 Martin Albrecht <martinralbrecht@googlemail.com>
*
*  Distributed under the terms of the GNU General Public License (GEL)
*  version 2 or higher.
*
*    This code is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*    General Public License for more details.
*
*  The full text of the GPL is available at:
*
*                  http://www.gnu.org/licenses/
******************************************************************************/

#include <m4ri/m4ri.h>
#include "mzd_ptr.h"
#include "gf2x.h"
#include "blm.h"

/**
 * \brief will be the data type for matrices over \GF2[x] in the future
 */

typedef struct {
  mzd_t **x;   /**< Coefficients. */
  rci_t nrows; /**< Number of rows. */
  rci_t ncols; /**< Number of columns. */
  deg_t depth;   /**< Degree +1      */
} mzd_poly_t;

/**
 * \brief C += (A+B)*x^offset
 *
 * \param C Target polynomial.
 * \param A Source polynomial.
 * \param B Source polynomial.
 * \param offset The result is shifted offset entries upwards.
 * 
 * \ingroup Addition
 *
 * \warning No bounds checks are performed.
 */

static inline mzd_poly_t *_mzd_poly_add(mzd_poly_t *C, const mzd_poly_t *A, const mzd_poly_t *B, unsigned int offset) {
  _mzd_ptr_add(C->x+offset, (const mzd_t**)A->x, (const mzd_t**)B->x, A->depth);
  return C;
}

/**
 * \brief C += (A+B)
 *
 * \param C Target polynomial.
 * \param A Source polynomial.
 * \param B Source polynomial.
 * 
 * \ingroup Addition
 */

static inline mzd_poly_t *mzd_poly_add(mzd_poly_t *C, const mzd_poly_t *A, const mzd_poly_t *B) {
  assert(C->depth >= A->depth && A->depth == B->depth);
  return _mzd_poly_add(C, A, B, 0);
}

/**
 * \brief Create a new polynomial of degree d with m x n matrices as coefficients.
 *
 * \param d Degree.
 * \param m Number of rows.
 * \param n Number of columns.
 *
 * \ingroup Constructions
 */

static inline mzd_poly_t *mzd_poly_init(const deg_t d, const rci_t m, const rci_t n) {
  mzd_poly_t *A = (mzd_poly_t*)m4ri_mm_malloc(sizeof(mzd_poly_t));
  A->x = (mzd_t**)m4ri_mm_malloc(sizeof(mzd_t*)*(d+1));

  A->nrows = m;
  A->ncols = n;
  A->depth = d+1;

  for(int i=0; i<A->depth; i++)
    A->x[i] = mzd_init(m,n);
  return A;
}

/**
 * \brief Free polynomial A
 *
 * \param A Polynomial.
 *
 * \ingroup Constructions
 */
 
static inline void mzd_poly_free(mzd_poly_t *A) {
  for(int i=0; i<A->depth; i++)
   mzd_free(A->x[i]);
  m4ri_mm_free(A->x);
  m4ri_mm_free(A);
}

/**
 * \brief change depth of A to new_depth.
 *
 * \param A Polynomial.
 * \param new_depth New depth (may be <,=,> than current depth).
 *
 * \ingroup Constructions
 */

static inline mzd_poly_t *_mzd_poly_adapt_depth(mzd_poly_t *A, const deg_t new_depth) {
  if (new_depth < A->depth) {
    for(int i=new_depth; i<A->depth; i++) {
      mzd_free(A->x[i]);
      A->x[i] = NULL;
    }
  } else {
    for(int i=A->depth; i<new_depth; i++) {
      A->x[i] = mzd_init(A->nrows,A->ncols);
    }
  }
  A->depth = new_depth;
  return A;
}

/**
 * \brief C += A*B using naive polynomial multiplication
 *
 * \param C Target polynomial.
 * \param A Source polynomial.
 * \param B Source polynomial.
 *
 * \ingroup Multiplication
 */

static inline mzd_poly_t *_mzd_poly_addmul_naive(mzd_poly_t *C, const mzd_poly_t *A, const mzd_poly_t *B) {
  if (C == NULL)
    C = mzd_poly_init(A->depth+B->depth-1, A->nrows, B->ncols);

  for(unsigned int i=0; i<A->depth; i++) {
    for(unsigned int j=0; j<B->depth; j++) {
      mzd_addmul(C->x[i+j], A->x[i], B->x[j], 0);
    }
  }
  return C;
}

/**
 * \brief C += A*B using Karatsuba multiplication on balanced inputs
 *
 * \param C Target polynomial.
 * \param A Source polynomial.
 * \param B Source polynomial.
 *
 * \ingroup Multiplication
 */


static inline mzd_poly_t *_mzd_poly_addmul_karatsubs_balanced(mzd_poly_t *C, const mzd_poly_t *A, const mzd_poly_t *B) {
  assert(A->depth == B->depth);

  if (C == NULL)
    C = mzd_poly_init(A->depth+B->depth-1, A->nrows, B->ncols);
  switch(A->depth) {
  case 0:
    m4ri_die("depth 0: seriously?");
  case  1: mzd_addmul(C->x[0], A->x[0], B->x[0], 0); break;
  case  2:  _mzd_ptr_addmul_karatsuba2(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  3:  _mzd_ptr_addmul_karatsuba3(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  4:  _mzd_ptr_addmul_karatsuba4(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  5:  _mzd_ptr_addmul_karatsuba5(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  6:  _mzd_ptr_addmul_karatsuba6(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  7:  _mzd_ptr_addmul_karatsuba7(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  8:  _mzd_ptr_addmul_karatsuba8(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  9:  _mzd_ptr_addmul_karatsuba9(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 10: _mzd_ptr_addmul_karatsuba10(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 11: _mzd_ptr_addmul_karatsuba11(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 12: _mzd_ptr_addmul_karatsuba12(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 13: _mzd_ptr_addmul_karatsuba13(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 14: _mzd_ptr_addmul_karatsuba14(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 15: _mzd_ptr_addmul_karatsuba15(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 16: _mzd_ptr_addmul_karatsuba16(NULL, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  default:
    m4ri_die("Not implemented\n");
  }
  return C;
}

/**
 * \brief C += A*B by applying the bilinear maps f, i.e. f->H*((f->F*A) x (f->G*B)).
 */

static inline mzd_poly_t *_mzd_poly_addmul_blm(mzd_poly_t *C, mzd_poly_t *A, mzd_poly_t *B, const blm_t *f) {
  assert(f!=NULL);
  assert(f->F->ncols == A->depth && f->G->ncols == B->depth);

  if (C == NULL)
    C = mzd_poly_init(A->depth+B->depth-1, A->nrows, B->ncols);

  _mzd_ptr_apply_blm(C->x, (const mzd_t**)A->x, (const mzd_t**)B->x, f);
  return C;
}


/**
 * \brief C += A*B using the Chinese Remainder Theorem.
 */

static inline mzd_poly_t *_mzd_poly_addmul_crt(mzd_poly_t *C, mzd_poly_t *A, mzd_poly_t *B) {
  int *p = crt_init(A->depth, B->depth);
  blm_t *f = blm_init_crt(NULL, A->depth, B->depth, p, 1);
  _mzd_poly_addmul_blm(C, A, B, f);
  blm_free(f);
  m4ri_mm_free(p);
  return C;
}

/**
 * \brief C += A*B using arithmetic in GF(2^log2(d)) if C has degree d.
 */

mzd_poly_t *_mzd_poly_addmul_ext1(mzd_poly_t *C, mzd_poly_t *A, mzd_poly_t *B);

/**
 * \brief Return -1,0,1 if if A < B, A == B or A > B respectively.
 *
 * \param A Matrix.
 * \param B Matrix.
 *
 * \note This comparison is not well defined (except for !=0) mathematically and relatively
 * arbitrary.
 *
 * \ingroup Comparison
 */

static inline int mzd_poly_cmp(mzd_poly_t *A, mzd_poly_t *B) {
  int r = 0;
  if ((A->depth != B->depth) ) {
    if (A->depth < B->depth)
      return -1;
    else 
      return 1;
  }
  for(int i=0; i<A->depth; i++)
    r |= mzd_cmp(A->x[i],B->x[i]);
  return r;
}

/**
 * \brief Fill matrix A with random elements.
 *
 * \param A Matrix
 *
 * \todo Allow the user to provide a RNG callback.
 *
 * \ingroup Assignment
 */

static inline void mzd_poly_randomize(mzd_poly_t *A) {
  for(int i=0; i<A->depth; i++)
    mzd_randomize(A->x[i]);
}

#endif //M4RIE_MZD_POLY_H