This file is indexed.

/usr/include/Lfunction/L.h is in liblfunction-dev 1.23+dfsg-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*

   Copyright (C) 2001,2002,2003,2004 Michael Rubinstein

   This file is part of the L-function package L.

   This program is free software; you can redistribute it and/or
   modify it under the terms of the GNU General Public License
   as published by the Free Software Foundation; either version 2
   of the License, or (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   Check the License for details. You should have received a copy of it, along
   with the package; see the file 'COPYING'. If not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/


#ifndef L_H
#define L_H

#ifdef _OPENMP
#include <omp.h>
#endif

#include <iomanip>          //for manipulating output such as setprecision
#include <fstream>          //for file input output
#include <string.h>         //for string functions such as strcpy
#include <strstream>        //for ostream:w
#include <iostream>         //for ostrstream

#include <math.h>
#include<vector>

#include "Lglobals.h"           //for global variables
#include "Lmisc.h"              //things like sn or LOG
#include "Lgamma.h"             //incomplete gamma function code
//#include "Lprecomp.h"
#include "Lriemannsiegel.h"     //Riemann Siegel formula
#include "Lriemannsiegel_blfi.h" //Hiary's Riemann Siegel formula using band limited interpolation



//-----THE L Function Class-----------------------------------


template <class ttype>
class L_function
{
public:


    char *name;                             // the name of the L_function

    int what_type_L;                        // -1 for zeta
                                            // 0 for unknown
                                            // 1 for periodic, i.e an L(s,chi), Dirichlet L-function
                                            // -2 for L(s,chi) but where the
                                            //    # coeffs computed is < period.
                                            // 2 for cusp form (in S_K(Gamma_0(N))
                                            // 3 for Maass form for SL_2(Z)
                                            // 4 etc for future types

    int number_of_dirichlet_coefficients;   // the number of dirichlet coefficients

    ttype *dirichlet_coefficient;           // the dirichlet coefficients.

    long long period;                       //stores the period.
                                            //0 if not periodic.

    Double Q;                               // the conductor (includes the Pi).
    Complex OMEGA;                          // in the functional equation
                                            // we assume |OMEGA| = 1 for the following:
                                            // rotating L(s) so as to be real on the
                                            // critical line, and in check_funct_equation.

    int a;                                  // quasi degree of the L-function
    Complex *lambda;                        // for the GAMMA factors 
    Double *gamma;                          // for the GAMMA factors. Either 1/2 or 1

                                            // for notational convenience we label 
                                            // them 1..a

    int number_of_poles;                    // the number of poles
    Complex *pole;                          // poles of the L-function
    Complex *residue;                       // residues at the poles

    //Complex S_0;                            // taylor series about S_0
    //Complex *taylor_series;                 // taylor coefficients
    //precomputation2 *local_series_a;        // precomputed taylor expansions for f1 integrand
    //precomputation2 *local_series_b;        // precomputed taylor expansions for f2 integrand

    //-----Constructor: default initilization is to the Riemann zeta function-------

    L_function ()
    {
        if(my_verbose>1)
            cout << "zeta constructor called\n";
        name = new char[5];
        strcpy(name,"zeta");
        what_type_L=-1;  // this is how I know it is zeta
        number_of_dirichlet_coefficients=0;
        dirichlet_coefficient = new ttype[1];
        period=0;
        Q=1/sqrt(Pi);
        OMEGA=1.;
        a=1;
        gamma = new Double[2];
        lambda = new Complex[2];
        gamma[1]=.5;
        lambda[1]=0;
        number_of_poles=2;
        pole = new Complex[3];
        residue = new Complex[3];
        pole[1]=1;
        residue[1]=1;
        pole[2]=0;
        residue[2]=-1;


        //S_0=.5;
        //taylor_series= new Complex[number_taylor_coeffs+1];

        //local_series_a=new precomputation2[number_local_series];
        //local_series_b=new precomputation2[number_local_series];
    }


    //-----Constructor: initialize the L-function from given data------------------
    L_function (const char *NAME, int what_type, int N, ttype *coeff, long long Period,
    Double q,  Complex w, int A, Double *g, Complex *l,
    int n_poles, Complex *p, Complex *r)
    {
        if(my_verbose>1)
            cout << "constructor called\n";
        int k;
        bool use_legendre_duplication = false; //at present there's no need to call legendre.

        name = new char[strlen(NAME)+1];
        strcpy(name,NAME);
        what_type_L=what_type;
        number_of_dirichlet_coefficients=N;
        dirichlet_coefficient = new ttype[N+1];
        for (k=1;k<=N;k++)
        {
            dirichlet_coefficient[k]= coeff[k];
            if(my_verbose>1&&k<=10)
            cout << "setting dirichlet coefficient" << k << " "
            << coeff[k]<< " "
            << dirichlet_coefficient[k]<< endl;
        }
        period=Period;
        Q=q;
        OMEGA=w;
        a=A;
        if(use_legendre_duplication){
            for (k=1;k<=A;k++) if (1.1-g[k]<.2&&A>1) a++; //i.e. if g[k]=1 as opposed to 1/2
        }
        gamma = new Double[a+1];
        lambda = new Complex[a+1];
        int j=A+1;
        for (k=1;k<=A;k++)
        {
            if (use_legendre_duplication&&1.1-g[k]<.2&&A>1)
            {
                gamma[k]=g[k]*.5;
                gamma[j]=g[k]*.5;
                lambda[k]=l[k]*.5;
                lambda[j]=l[k]*.5+.5;
                Q=2*Q;
                j++;
            }
            else
            {
                gamma[k]=g[k];
                lambda[k]=l[k];
            }
        }
        number_of_poles=n_poles;
        pole = new Complex[n_poles+1];
        residue = new Complex[n_poles+1];
        for (k=1;k<=n_poles;k++)
        {
            pole[k]=p[k];
            residue[k]=r[k];
        }


    }

    //-----Constructor: initialize the L-function from given data------------------
    L_function (const char *NAME, int what_type, int N, ttype *coeff, long long Period,
    Double q,  Complex w, int A, Double *g, Complex *l)
    {
        if(my_verbose>1)
            cout << "constructor called\n";
        int k;
        bool use_legendre_duplication = false;

        name = new char[strlen(NAME)+1];
        strcpy(name,NAME);
        what_type_L=what_type;
        number_of_dirichlet_coefficients=N;
        dirichlet_coefficient = new ttype[N+1];
        for (k=1;k<=N;k++)
        {
            dirichlet_coefficient[k]= coeff[k];
            if(my_verbose>1&&k<=10)
            cout << "setting dirichlet coefficient" << k << " "
            << coeff[k]<< " "
            << dirichlet_coefficient[k]<< endl;
        }
        period=Period;
        Q=q;
        OMEGA=w;
        a=A;
        if(use_legendre_duplication){
            for (k=1;k<=A;k++) if (1.1-g[k]<.2&&A>1) a++; //i.e. if g[k]=1 as opposed to 1/2
        }
        gamma = new Double[a+1];
        lambda = new Complex[a+1];
        int j=A+1;
        for (k=1;k<=A;k++)
        {
            if (use_legendre_duplication&&1.1-g[k]<.2&&A>1)
            {
                gamma[k]=g[k]*.5;
                gamma[j]=g[k]*.5;
                lambda[k]=l[k]*.5;
                lambda[j]=l[k]*.5+.5;
                Q=2*Q;
                j++;
            }
            else
            {
                gamma[k]=g[k];
                lambda[k]=l[k];
            }
        }
        number_of_poles=0;
        pole = new Complex[1];
        residue = new Complex[1];

    }

    //-----Copy constructor-------------------------
    L_function (const L_function &L)
    {

        if(my_verbose>1)
            cout << "copy called\n";

        int k;
        name = new char[strlen(L.name)+1];
        strcpy(name,L.name);
        what_type_L=L.what_type_L;
        number_of_dirichlet_coefficients=L.number_of_dirichlet_coefficients;;
        dirichlet_coefficient = new ttype[number_of_dirichlet_coefficients+1];
        for (k=1;k<=number_of_dirichlet_coefficients;k++)
        {
            dirichlet_coefficient[k]= L.dirichlet_coefficient[k];
            if(my_verbose>1&&k<=10)
            cout << "setting dirichlet coefficient" << k << " "
            << L.dirichlet_coefficient[k] << " "
            << dirichlet_coefficient[k]<< endl;
        }
        period=L.period;
        #ifdef USE_MPFR
            reset(Q);
            reset(OMEGA);
        #endif
        Q=L.Q;
        OMEGA=L.OMEGA;
        a=L.a;
        gamma = new Double[a+1];
        lambda = new Complex[a+1];
        for (k=1;k<=a;k++)
        {
            gamma[k]=L.gamma[k];
            lambda[k]=L.lambda[k];
        }
        number_of_poles=L.number_of_poles;
        pole = new Complex[number_of_poles+1];
        residue = new Complex[number_of_poles+1];
        for (k=1;k<=number_of_poles;k++)
        {
            pole[k]=L.pole[k];
            residue[k]=L.residue[k];
        }

        //S_0=L.S_0;
        //taylor_series= new Complex[number_taylor_coeffs+1];
        //for(k=0;k<=number_taylor_coeffs;k++)taylor_series[k]=L.taylor_series[k];

        //local_series_a=new precomputation2[number_local_series];
        //local_series_b=new precomputation2[number_local_series];
        //for(k=0;k<number_local_series;k++){
            //local_series_a[k]=L.local_series_a[k];
            //local_series_b[k]=L.local_series_b[k];
        //}

    }

    //-----Assignment operator--------------------
    L_function & operator = (const L_function &L)
    {
        int k;
        if(my_verbose>1)
            cout << "assignment called\n"; 
        if (this != &L)
        {
            delete [] name;
            name=new char[strlen(L.name)+1];
            strcpy(name,L.name);
            what_type_L=L.what_type_L;
            number_of_dirichlet_coefficients=L.number_of_dirichlet_coefficients;
            delete [] dirichlet_coefficient;
            dirichlet_coefficient = new ttype[number_of_dirichlet_coefficients+1];
            for (k=1;k<=number_of_dirichlet_coefficients;k++)
                dirichlet_coefficient[k]= L.dirichlet_coefficient[k];
            period=L.period;
            #ifdef USE_MPFR
                reset(Q);
                reset(OMEGA);
            #endif
            Q=L.Q;
            OMEGA=L.OMEGA;
            a=L.a;
            delete [] gamma;
            gamma = new Double[a+1];
            delete [] lambda;
            lambda = new Complex[a+1];
            for (k=1;k<=a;k++)
            {
                gamma[k]=L.gamma[k];
                lambda[k]=L.lambda[k];
            }
            number_of_poles=L.number_of_poles;
            delete [] pole;
            pole = new Complex[number_of_poles+1];
            delete [] residue;
            residue = new Complex[number_of_poles+1];
            for (k=1;k<=number_of_poles;k++)
            {
                pole[k]=L.pole[k];
                residue[k]=L.residue[k];
            }


            //S_0=L.S_0;
            //delete [] taylor_series;

            //taylor_series= new Complex[number_taylor_coeffs+1];
            //for(k=0;k<=number_taylor_coeffs;k++)taylor_series[k]=L.taylor_series[k];

            //local_series_a=new precomputation2[number_local_series];
            //local_series_b=new precomputation2[number_local_series];
            //for(k=0;k<number_local_series;k++){
                //local_series_a[k]=L.local_series_a[k];
                //local_series_b[k]=L.local_series_b[k];
            //}


        }
        return *this;
    }

    //-----Destructor: free allocated memory------------------
    ~L_function ()
    {
        if(my_verbose>1)
            cout << "destructor called\n"; 
        delete [] name;
        delete [] dirichlet_coefficient;
        delete [] gamma;
        delete [] lambda;
        delete [] pole;
        delete [] residue;
        //delete [] taylor_series;
        //delete [] local_series_a;
        //delete [] local_series_b;
    }


    //-----addition operator--------------------
    //returns the 'L-function' whose basic data (funct eqn, dirichlet coefficients) 
    //is that of this added to that of L
    //not particularly useful
    L_function operator + (const L_function &L)
    {
        L_function L2;
        int k;
        if(my_verbose>1)
            cout << "addition called\n"; 
        L2.name=new char[1];
        strcpy(L2.name,"");
        L2.what_type_L=L.what_type_L;
        L2.number_of_dirichlet_coefficients=L.number_of_dirichlet_coefficients;
        L2.dirichlet_coefficient = new ttype[number_of_dirichlet_coefficients+1];
        for (k=1;k<=number_of_dirichlet_coefficients;k++)
            L2.dirichlet_coefficient[k]= dirichlet_coefficient[k] +L.dirichlet_coefficient[k];
        L2.period=L.period;
        #ifdef USE_MPFR //XXXXXXXXXXXX don't think this is needed since the assignment call does same
            reset(L2.Q);
            reset(L2.OMEGA);
        #endif
        L2.Q=Q+L.Q;
        L2.OMEGA=OMEGA+L.OMEGA;
        L2.a=L.a;
        L2.gamma = new Double[a+1];
        L2.lambda = new Complex[a+1];
        for (k=1;k<=a;k++)
        {
            L2.gamma[k]=gamma[k]+L.gamma[k];
            L2.lambda[k]=lambda[k]+L.lambda[k];
        }
        L2.number_of_poles=number_of_poles;
        L2.pole = new Complex[number_of_poles+1];
        L2.residue = new Complex[number_of_poles+1];
        for (k=1;k<=number_of_poles;k++)
        {
            L2.pole[k]=pole[k]+L.pole[k];
            L2.residue[k]=residue[k]+L.residue[k];
        }

        return L2;

    }
    //-----multiplication operator--------------------
    //returns the L-function whose basic data (funct eqn, dirichlet coefficients) 
    //is that of this times the scalar t
    //not particularly useful
    L_function operator * (double t)
    {
        L_function L2;
        int k;
        if(my_verbose>1)
            cout << "addition called\n"; 
        L2.name=new char[1];
        strcpy(L2.name,"");
        L2.what_type_L=what_type_L;
        L2.number_of_dirichlet_coefficients=number_of_dirichlet_coefficients;
        L2.dirichlet_coefficient = new ttype[number_of_dirichlet_coefficients+1];
        for (k=1;k<=number_of_dirichlet_coefficients;k++)
            L2.dirichlet_coefficient[k]= dirichlet_coefficient[k]*t;
        L2.period=period;
        #ifdef USE_MPFR //XXXXXXXXXXXX don't think this is needed since the assignment call does same
            reset(L2.Q);
            reset(L2.OMEGA);
        #endif
        L2.Q=Q*t;
        L2.OMEGA=OMEGA*t;
        L2.a=a;
        L2.gamma = new Double[a+1];
        L2.lambda = new Complex[a+1];
        for (k=1;k<=a;k++)
        {
            L2.gamma[k]=gamma[k]*t;
            L2.lambda[k]=lambda[k]*t;
        }
        L2.number_of_poles=number_of_poles;
        L2.pole = new Complex[number_of_poles+1];
        L2.residue = new Complex[number_of_poles+1];
        for (k=1;k<=number_of_poles;k++)
        {
            L2.pole[k]=pole[k]*t;
            L2.residue[k]=residue[k]*t;
        }

        return L2;
    }




    //#include "Lprint.h"         //printing routine
    void print_data_L(int N=10); //prints basic data for an L-function

    //#include "Lnumberzeros.h"   //computes N(T) without S(T), roughly number zeros in |t|<T
    Double N(Double T); // computes N(T), number of zeros up to height T


    //#include "Lgram.h"          //for finding gram points
    Double initialize_gram(Double t);
    Double next_gram(Double t);

    //#include "Ldirichlet_series.h" //for computing Dirichlet series
    Complex partial_dirichlet_series(Complex s, long long N1, long long N2);
    Complex dirichlet_series(Complex s, long long N=-1LL);

    //#include "Ltaylor_series.h" //for computing taylor series for Dirichlet series
    //void compute_taylor_series(int N, int K, Complex s_0, Complex *series);
    //void compute_local_contribution(Complex *local_series,Complex z1,Complex z2);
    //void compute_taylor();
    //Complex value_via_taylor_series(Complex s,int n=0,char *return_type="pure");

    //#include "Lvalue.h"         //value via Riemann sum, via gamma sum, various options for value
    Complex find_delta(Complex s,Double g);
    Complex value_via_Riemann_sum(Complex s, const char *return_type="pure");
    Complex value_via_gamma_sum(Complex s, const char *return_type="pure");
    Complex value(Complex s, int derivative = 0, const char *return_type="pure");

    //#include "Lfind_zeros.h"    //finding zeros routine
    Double zeros_zoom_brent(Double L1, Double L2, Double u, Double v);
    void find_zeros(Double t1, Double t2, Double step_size, const char* filename="cout", const char* message_stamp="");
    void  find_zeros_v(Double t1, Double t2, Double step_size,  vector<Double> &result);//This is the same as above function
    void find_zeros_via_gram(Double t1, Long count=0,Double max_refine=1025, const char* filename="cout", const char* message_stamp="");
    int compute_rank(bool print_rank=false);
    void verify_rank(int rank);
    void find_zeros_via_N(Long count=0,bool do_negative=true,Double max_refine=1025, int rank=-1, bool test_explicit_formula=false, const char* filename="cout", const char* message_stamp="");
    void find_zeros_via_N_v(Long count,bool do_negative,Double max_refine, int rank, bool test_explicit_formula, vector<Double>  &result);
    void find_zeros_elaborate(Double t1, Long count=0,Double max_refine=1025, const char* filename="cout", const char* message_stamp="");

    //#include "Ldokchitser.h"    //dokchitser algorithm for what he calls phi(t), i.e. inverse
    void phi_series(int precision);

    //#include "Lexplicit_formula.h"
    int dirichlet_coeffs_log_diff(int num_coeff, Complex *c);
    int test_explicit_formula(Double A, Double x_0, Double *zero_table, int number_zeroes, Complex *c, int num_coeffs);


};



//templated class code should be kept in .h files
#include "Ldirichlet_series.h" //for computing Dirichlet series
#include "Lprint.h"         //printing routine
#include "Lnumberzeros.h"   //computes N(T) without S(T), roughly number zeros in |t|<T
#include "Lgram.h"          //for finding gram points
//#include "Ltaylor_series.h" //for computing taylor series for Dirichlet series
#include "Lvalue.h"         //value via Riemann sum, via gamma sum, various options for value
#include "Lfind_zeros.h"    //finding zeros routine
#include "Ldokchitser.h"    //dokchitser algorithm for what he calls phi(t), i.e. inverse
                            //mellin transform

#include "Lexplicit_formula.h" //for testing zeros with the explicit formula

#endif