/usr/include/itpp/comm/convcode.h is in libitpp-dev 4.3.1-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | /*!
* \file
* \brief Definition of a binary convolutional encoder class
* \author Tony Ottosson and Adam Piatyszek
*
* -------------------------------------------------------------------------
*
* Copyright (C) 1995-2010 (see AUTHORS file for a list of contributors)
*
* This file is part of IT++ - a C++ library of mathematical, signal
* processing, speech processing, and communications classes and functions.
*
* IT++ is free software: you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* IT++ is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along
* with IT++. If not, see <http://www.gnu.org/licenses/>.
*
* -------------------------------------------------------------------------
*/
#ifndef CONVCODE_H
#define CONVCODE_H
#include <itpp/base/vec.h>
#include <itpp/base/mat.h>
#include <itpp/base/array.h>
#include <itpp/base/binary.h>
#include <itpp/comm/channel_code.h>
#include <itpp/itexports.h>
#include <itpp/base/base_exports.h>
namespace itpp
{
/*!
\brief Type of Convolutional Code
\ingroup fec
*/
enum CONVOLUTIONAL_CODE_TYPE {MFD, ODS};
/*!
\brief Encoding and decoding methods for Convolutional codes
\ingroup fec
*/
enum CONVOLUTIONAL_CODE_METHOD {Trunc, Tail, Tailbite};
/*!
\ingroup fec
\brief Binary Convolutional rate 1/n class
The codes are given as feedforward encoders and given in the
Proakis form. That is, the binary generators (K-tuples) are
converted to octal integers. Observe that the constraint length
(K) is defined as the number of memory cells plus one (as in
Proakis).
Encoding is performed with the encode function. The default method
for encoding is by adding a tail of K-1 zeros and also assume that
the encoder starts in the zero state (the encode_tail()
function). Observe that decode() by default also assumes that a
tail is added. Both encoding and decoding method can be changed by
the set_method() function.
Example of use: (rate 1/3 constraint length K=7 ODS code using BPSK
over AWGN)
\code
BPSK bpsk;
Convolutional_Code code;
ivec generator(3);
generator(0)=0133;
generator(1)=0165;
generator(2)=0171;
code.set_generator_polynomials(generator, 7);
bvec bits=randb(100), encoded_bits, decoded_bits;
vec tx_signal, rx_signal;
code.encode_tail(bits, encoded_bits);
tx_signal = bpsk.modulate_bits(encoded_bits);
rx_signal = tx_signal + sqrt(0.5)*randn(tx_signal.size());
code.decode_tail(rx_signal, decoded_bits);
\endcode
Comment: ODS-code stand for Optimum Distance Spectrum Code. For
details see T. Ottosson, "Coding, Modulation and Multiuser
Decoding for DS-CDMA Systems," Ph.d. thesis, Department of
Information Theory, Scool of Electrical and Computer Engineering,
Chalmers University of Technology, Goteborg 1997.
It is also possible to set the generator polynomials directly using
the builtin tables which consists of: Maximum Free Distance (MFD)
Codes of rates R=1/2 through R=1/8 and Optimum Distance Spectrum
(ODS) Codes of rates R=1/2 through R=1/4.
*/
class ITPP_EXPORT Convolutional_Code : public Channel_Code
{
public:
//! Default constructor - sets (0133,0171) code with tail
Convolutional_Code(void): K(0), start_state(0), cc_method(Tail) {
set_code(MFD, 2, 7);
init_encoder();
}
//! Destructor
virtual ~Convolutional_Code(void) {}
//! Set encoding and decoding method (Trunc, Tail, or Tailbite)
void set_method(const CONVOLUTIONAL_CODE_METHOD method) {
cc_method = method;
}
/*!
\brief Set the code according to built-in tables
The \a type_of_code can be either \a MFD or \a ODS for maximum
free distance codes (according to Proakis) or Optimum Distance
Spectrum Codes according to Frenger, Orten and Ottosson.
*/
void set_code(const CONVOLUTIONAL_CODE_TYPE type_of_code, int inverse_rate,
int constraint_length);
//! Set generator polynomials. Given in Proakis integer form
void set_generator_polynomials(const ivec &gen, int constraint_length);
//! Get generator polynomials
ivec get_generator_polynomials(void) const { return gen_pol; }
//! Reset encoder and decoder states
void reset();
//@{
//! Encode an input binary vector using specified method (Tail by default)
virtual void encode(const bvec &input, bvec &output);
virtual bvec encode(const bvec &input) {
bvec output;
encode(input, output);
return output;
}
//@}
//@{
/*!
* \brief Encode a binary vector starting from the previous encoder state
*
* The initial encoder state can be changed using set_start_state()
* and init_encoder() functions.
*/
void encode_trunc(const bvec &input, bvec &output);
bvec encode_trunc(const bvec &input) {
bvec output;
encode_trunc(input, output);
return output;
}
//@}
//@{
/*!
* \brief Encoding that starts and ends in the zero state
*
* Encode a binary vector of inputs starting from zero state and also
* adds a tail of K-1 zeros to force the encoder into the zero state.
* Well suited for packet transmission.
*
* \note The init_encoder() function has no effect on the starting state
* for this method.
*/
void encode_tail(const bvec &input, bvec &output);
bvec encode_tail(const bvec &input) {
bvec output;
encode_tail(input, output);
return output;
}
//@}
//@{
/*!
* \brief Encode an input binary vector using tailbiting
*
* In the Tailbiting method the starting state of the encoder is
* initialised with the last K-1 bits of the input vector. This gives an
* additional information to the decoder that the starting and ending
* states are identical, although not known a priori.
*
* Well suited for packet transmission with small packets, because there
* is no tail overhead as in the Tail method.
*
* \note The init_encoder() function has no effect on the starting state
* for this method.
*/
void encode_tailbite(const bvec &input, bvec &output);
bvec encode_tailbite(const bvec &input) {
bvec output;
encode_tailbite(input, output);
return output;
}
//@}
//@{
/*!
\brief Encode a binary bit starting from the internal encoder state.
To initialize the encoder state use set_start_state() and init_encoder()
*/
void encode_bit(const bin &input, bvec &output);
bvec encode_bit(const bin &input) {
bvec output;
encode_bit(input, output);
return output;
}
//@}
// ------------ Hard-decision decoding is not implemented ----------------
virtual void decode(const bvec &coded_bits, bvec &decoded_bits);
virtual bvec decode(const bvec &coded_bits);
//@{
//! Decode a block of encoded data using specified method (Tail by default)
virtual void decode(const vec &received_signal, bvec &output);
virtual bvec decode(const vec &received_signal) {
bvec output;
decode(received_signal, output);
return output;
}
//@}
//@{
/*!
\brief Decode a block of encoded data where encode_tail has been used.
Thus is assumes a decoder start state of zero and that a tail of
K-1 zeros has been added. No memory truncation.
*/
virtual void decode_tail(const vec &received_signal, bvec &output);
virtual bvec decode_tail(const vec &received_signal) {
bvec output;
decode_tail(received_signal, output);
return output;
}
//@}
//@{
/*!
* \brief Decode a block of encoded data where encode_tailbite has been
* used.
*
* The decoding algorithm tries all start states, so the
* decode_tailbite() is \f$2^{K-1}\f$ times more complex than the
* decode_tail method.
*/
virtual void decode_tailbite(const vec &received_signal, bvec &output);
virtual bvec decode_tailbite(const vec &received_signal) {
bvec output;
decode_tailbite(received_signal, output);
return output;
}
//@}
//@{
//! Viterbi decoding using truncation of memory (default = 5*K)
virtual void decode_trunc(const vec &received_signal, bvec &output);
virtual bvec decode_trunc(const vec &received_signal) {
bvec output;
decode_trunc(received_signal, output);
return output;
}
//@}
//! Return rate of code (not including the rate-loss)
virtual double get_rate(void) const { return rate; }
//! Set encoder default start state.
void set_start_state(int state) {
it_error_if((state < 0) || ((state >= (1 << m)) && m != 0),
"Convolutional_Code::set_start_state(): Invalid start state");
start_state = state;
}
/*!
* \brief Initialise internal encoder state with start state. Has no
* effect on \c Tail and \c Tailbite methods.
*/
void init_encoder() { encoder_state = start_state; }
//! Get the current encoder state
int get_encoder_state(void) const { return encoder_state; }
//! Set memory truncation length. Must be at least K.
void set_truncation_length(const int length) {
it_error_if(length < K, "Convolutional_Code::set_truncation_length(): "
"Truncation length shorter than K");
trunc_length = length;
}
//! Get memory truncation length
int get_truncation_length(void) const { return trunc_length; }
//! Check if catastrophic. Returns true if catastrophic
bool catastrophic(void);
/*!
\brief Calculate the inverse sequence
Assumes that encode_tail is used in the encoding
process. Returns false if there is an error in the coded
sequence (not a valid codeword). Do not check that the tail
forces the encoder into the zeroth state.
*/
bool inverse_tail(const bvec coded_sequence, bvec &input);
//! \brief Calculate distance profile. If reverse = true calculate for
//! the reverse code instead.
void distance_profile(ivec &dist_prof, int dmax = 100000,
bool reverse = false);
/*!
\brief Calculate spectrum
Calculates both the weight spectrum (Ad) and the information
weight spectrum (Cd) and returns it as ivec:s in the 0:th and
1:st component of spectrum, respectively. Suitable for
calculating many terms in the spectra (uses an breadth first
algorithm). It is assumed that the code is non-catastrophic or
else it is a possibility for an eternal loop.
dmax = an upper bound on the free distance
no_terms = no_terms including the dmax term that should be calculated
Observe that there is a risk that some of the integers are
overflow if many terms are calculated in the spectrum.
*/
void calculate_spectrum(Array<ivec> &spectrum, int dmax, int no_terms);
/*!
\brief Cederwall's fast algorithm
Calculates both the weight spectrum (Ad) and the information
weight spectrum (Cd) and returns it as ivec:s in the 0:th and
1:st component of spectrum, respectively. The FAST algorithm is
good for calculating only a few terms in the spectrum. If many
terms are desired, use calc_spectrum instead. The algorithm
returns -1 if the code tested is worse that the input dfree and
Cdfree. It returns 0 if the code MAY be catastrophic (assuming
that test_catastrophic is true), and returns 1 if everything
went right.
\arg \c dfree the free distance of the code (or an upper bound)
\arg \c no_terms including the dfree term that should be calculated
\arg \c Cdfree is the best value of information weight spectrum found so far
Observe that there is a risk that some of the integers are
overflow if many terms are calculated in the spectrum.
See IT No. 6, pp. 1146-1159, Nov. 1989 for details.
*/
int fast(Array<ivec> &spectrum, const int dfree, const int no_terms,
const int Cdfree = 1000000, const bool test_catastrophic = false);
protected:
//! Next state from instate given the input
int next_state(const int instate, const int input) {
return ((instate >> 1) | (input << (m - 1)));
}
//! The previous state from state given the input
int previous_state(const int state, const int input) {
return (((state << 1) | input) & ((1 << m) - 1));
}
//! The previous state from state given the input
void previous_state(const int state, int &S0, int &S1) {
S0 = (state << 1) & (no_states - 1);
S1 = S0 | 1;
}
//! The weight of the transition from given state with the input given
int weight(const int state, const int input);
//! The weight of the two paths (input 0 or 1) from given state
void weight(const int state, int &w0, int &w1);
//! \brief The weight (of the reverse code) of the transition from given
//! state with the input given
int weight_reverse(const int state, const int input);
//! \brief The weight (of the reverse code) of the two paths (input 0
//! or 1) from given state
void weight_reverse(const int state, int &w0, int &w1);
//! Output on transition (backwards) with input from state
bvec output_reverse(const int state, const int input);
//! Output on transition (backwards) with input from state
void output_reverse(const int state, bvec &zero_output, bvec &one_output);
//! Output on transition (backwards) with input from state
void output_reverse(const int state, int &zero_output, int &one_output);
//! Calculate delta metrics for 0 and 1 input branches reaching state
void calc_metric_reverse(const int state, const vec &rx_codeword,
double &zero_metric, double &one_metric);
//! Calculate delta metrics for all possible codewords
void calc_metric(const vec &rx_codeword, vec &delta_metrics);
//! Returns the input that results in state, that is the MSB of state
int get_input(const int state) { return (state >> (m - 1)); }
//! Number of generators
int n;
//! Constraint length
int K;
//! Memory of the encoder
int m;
//! Number of states
int no_states;
//! Generator polynomials
ivec gen_pol;
//! Generator polynomials for the reverse code
ivec gen_pol_rev;
//! The current encoder state
int encoder_state;
//! The encoder start state
int start_state;
//! The decoder truncation length
int trunc_length;
//! The rate of the code
double rate;
//! Auxilary table used by the codec
bvec xor_int_table;
//! output in int format for a given state and input
imat output_reverse_int;
//! encoding and decoding method
CONVOLUTIONAL_CODE_METHOD cc_method;
//! Path memory (trellis)
imat path_memory;
//! Visited states
Array<bool> visited_state;
//! Metrics accumulator
vec sum_metric;
//! Truncated path memory pointer
int trunc_ptr;
//! Truncated memory fill state
int trunc_state;
};
// --------------- Some other functions that maybe should be moved -----------
/*!
\relates Convolutional_Code
\brief Reverses the bitrepresentation of in (of size length) and converts to an integer
*/
ITPP_EXPORT int reverse_int(int length, int in);
/*!
\relates Convolutional_Code
\brief Calculate the Hamming weight of the binary representation of in of size length
*/
ITPP_EXPORT int weight_int(int length, int in);
/*!
\relates Convolutional_Code
\brief Compare two distance spectra. Return 1 if v1 is less, 0 if v2 less, and -1 if equal.
*/
ITPP_EXPORT int compare_spectra(ivec v1, ivec v2);
/*!
\relates Convolutional_Code
\brief Compare two distance spectra using a weight profile.
Return 1 if v1 is less, 0 if v2 less, and -1 if equal.
*/
ITPP_EXPORT int compare_spectra(ivec v1, ivec v2, vec weight_profile);
} // namespace itpp
#endif // #ifndef CONVCODE_H
|