This file is indexed.

/usr/include/InsightToolkit/Review/itkDiscreteGaussianDerivativeImageFunction.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkDiscreteGaussianDerivativeImageFunction.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkDiscreteGaussianDerivativeImageFunction_h
#define __itkDiscreteGaussianDerivativeImageFunction_h

#include "itkNeighborhoodOperatorImageFunction.h"
#include "itkImageFunction.h"
#include "itkGaussianOperator.h"
#include "itkGaussianDerivativeOperator.h"

namespace itk
{

/**
 * \class DiscreteGaussianDerivativeImageFunction
 * \brief Compute the discrete gaussian derivatives of an the image
 *        at a specific location in space, i.e. point, index or continuous
 *        index. This class computes a single derivative given the order in
 *        each direction (by default zero).
 * This class is templated over the input image type.
 *
 * The Initialize() method must be called after setting the parameters and before
 * evaluating the function.
 *
 * \author Ivan Macia, VICOMTech, Spain, http://www.vicomtech.es
 *
 * This implementation was taken from the Insight Journal paper:
 * http://hdl.handle.net/1926/1290
 *
 * \sa NeighborhoodOperator
 * \sa ImageFunction
 */
template <class TInputImage,class TOutput=double>
class ITK_EXPORT DiscreteGaussianDerivativeImageFunction :
  public ImageFunction< TInputImage, TOutput, TOutput >
{
public:

  /**Standard "Self" typedef */
  typedef DiscreteGaussianDerivativeImageFunction   Self;

  /** Standard "Superclass" typedef */
  typedef ImageFunction<TInputImage, TOutput, TOutput>  Superclass;

  /** Smart pointer typedef support. */
  typedef SmartPointer<Self>        Pointer;
  typedef SmartPointer<const Self>  ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro( DiscreteGaussianDerivativeImageFunction, ImageFunction );

  /** Image dependent types. */
  typedef typename Superclass::InputImageType       InputImageType;
  typedef typename Superclass::InputPixelType       InputPixelType;
  typedef typename Superclass::IndexType            IndexType;
  typedef typename Superclass::IndexValueType       IndexValueType;
  typedef typename Superclass::ContinuousIndexType  ContinuousIndexType;
  typedef typename Superclass::PointType            PointType;

  /** Dimension of the underlying image. */
  itkStaticConstMacro(ImageDimension2, unsigned int,
                      InputImageType::ImageDimension);

  /** Output type. */
  typedef typename Superclass::OutputType     OutputType;

  /** Arrays for native types. */
  typedef FixedArray<double,itkGetStaticConstMacro(ImageDimension2)>        VarianceArrayType;
  typedef FixedArray<unsigned int,itkGetStaticConstMacro(ImageDimension2)>  OrderArrayType;

  typedef itk::GaussianDerivativeOperator<TOutput,
    itkGetStaticConstMacro(ImageDimension2)>    GaussianDerivativeOperatorType;

  /** Array to store gaussian derivative operators one for each dimension. */
  typedef FixedArray<GaussianDerivativeOperatorType,
    itkGetStaticConstMacro(ImageDimension2)>            GaussianDerivativeOperatorArrayType;

  /** Precomputed N-dimensional derivative kernel. */
  typedef Neighborhood<TOutput,itkGetStaticConstMacro(ImageDimension2)>  KernelType;

  /** Image function that performs convolution with the neighborhood operator. */
  typedef NeighborhoodOperatorImageFunction
    <InputImageType, TOutput>                           OperatorImageFunctionType;
  typedef typename OperatorImageFunctionType::Pointer   OperatorImageFunctionPointer;

  /** Interpolation modes. */
  enum InterpolationModeType { NearestNeighbourInterpolation, LinearInterpolation };

public:

  /** Evaluate the function at specified point. */
  virtual OutputType Evaluate(const PointType& point) const;

  /** Evaluate the function at specified Index position */
  virtual OutputType EvaluateAtIndex( const IndexType & index ) const;

  /** Evaluate the function at specified ContinousIndex position. */
  virtual OutputType EvaluateAtContinuousIndex(
    const ContinuousIndexType & index ) const;

  /** Set/Get the variance for the discrete Gaussian kernel.
   * Sets the variance for individual dimensions. The default is 0.0
   * in each dimension. If UseImageSpacing is true, the units are the
   * physical units of your image. If UseImageSpacing is false then
   * the units are pixels.
   */
  itkSetMacro( Variance, VarianceArrayType );
  itkGetConstMacro( Variance, const VarianceArrayType );
  itkSetVectorMacro( Variance, double, VarianceArrayType::Length );

  /** Convenience method for setting the variance for all dimensions. */
  virtual void SetVariance( double variance )
    {
    m_Variance.Fill( variance );
    this->Modified();
    }

  /** Convenience method for setting the variance through the standard
   * deviation.
   */
  void SetSigma( const double sigma )
    {
    SetVariance( sigma * sigma );
    }

  /** Set/Get the desired maximum error of the gaussian approximation.  Maximum
   * error is the difference between the area under the discrete Gaussian curve
   * and the area under the continuous Gaussian. Maximum error affects the
   * Gaussian operator size. The value is clamped between 0.00001 and
   * 0.99999.
   */
  itkSetClampMacro( MaximumError, double, 0.00001, 0.99999 );
  itkGetConstMacro( MaximumError, double );

  /** Set/Get the derivative order for an individual dimension. */
  itkSetMacro( Order, OrderArrayType );
  itkGetConstMacro( Order, const OrderArrayType );
  itkSetVectorMacro( Order, unsigned int, OrderArrayType::Length );

  /** Convenience method for setting the order for all dimensions. */
  virtual void SetOrder( unsigned int order )
    {
    m_Order.Fill( order );
    this->Modified();
    }

  /** Set/Get the flag for calculating scale-space normalized derivatives.
    * Normalized derivatives are obtained multiplying by the scale
    * parameter t. */
  itkSetMacro( NormalizeAcrossScale, bool );
  itkGetConstMacro( NormalizeAcrossScale, bool );
  itkBooleanMacro( NormalizeAcrossScale );

  /** Set/Get the flag for using image spacing when calculating derivatives. */
  itkSetMacro( UseImageSpacing, bool );
  itkGetConstMacro( UseImageSpacing, bool );
  itkBooleanMacro( UseImageSpacing );

  /** Set/Get a limit for growth of the kernel. Small maximum error values with
   *  large variances will yield very large kernel sizes. This value can be
   *  used to truncate a kernel in such instances. A warning will be given on
   *  truncation of the kernel. */
  itkSetMacro( MaximumKernelWidth, unsigned int );
  itkGetConstMacro( MaximumKernelWidth, unsigned int );

  /** Set/Get the interpolation mode. */
  itkSetMacro( InterpolationMode, InterpolationModeType );
  itkGetConstMacro( InterpolationMode, InterpolationModeType );

  /** Set the input image.
   * \warning this method caches BufferedRegion information.
   * If the BufferedRegion has changed, user must call
   * SetInputImage again to update cached values. */
  virtual void SetInputImage( const InputImageType * ptr );

  /** Initialize the Gaussian kernel. Call this method before
   * evaluating the function. This method MUST be called after any
   * changes to function parameters. */
  virtual void Initialize( ) { RecomputeGaussianKernel(); }

protected:

  DiscreteGaussianDerivativeImageFunction();
  DiscreteGaussianDerivativeImageFunction( const Self& ){};

  ~DiscreteGaussianDerivativeImageFunction(){};

  void operator=( const Self& ){};
  void PrintSelf(std::ostream& os, Indent indent) const;

  void RecomputeGaussianKernel();

private:

  /** Desired variance of the discrete Gaussian function. */
  VarianceArrayType m_Variance;

  /** Order of the derivatives in each dimension. */
  OrderArrayType m_Order;

  /** Difference between the areas under the curves of the continuous and
   * discrete Gaussian functions. */
  double m_MaximumError;

  /** Maximum kernel size allowed.  This value is used to truncate a kernel
   *  that has grown too large.  A warning is given when the specified maximum
   *  error causes the kernel to exceed this size. */
  unsigned int m_MaximumKernelWidth;

  /** Array of derivative operators, one for each dimension. */
  GaussianDerivativeOperatorArrayType m_OperatorArray;

  /** N-dimensional kernel which is the result of convolving the operators
    * for calculating derivatives. */
  KernelType m_DerivativeKernel;

  /** OperatorImageFunction */
  OperatorImageFunctionPointer m_OperatorImageFunction;

  /** Flag for scale-space normalization of derivatives. */
  bool m_NormalizeAcrossScale;

  /** Flag to indicate whether to use image spacing */
  bool m_UseImageSpacing;

  /** Interpolation mode. */
  InterpolationModeType m_InterpolationMode;

};

} // namespace itk

// Define instantiation macro for this template.
#define ITK_TEMPLATE_DiscreteGaussianDerivativeImageFunction(_, EXPORT, x, y) namespace itk { \
  _(2(class EXPORT DiscreteGaussianDerivativeImageFunction< ITK_TEMPLATE_2 x >)) \
  namespace Templates { typedef DiscreteGaussianDerivativeImageFunction< ITK_TEMPLATE_2 x > \
                         DiscreteGaussianDerivativeImageFunction##y; } \
  }

#if ITK_TEMPLATE_EXPLICIT
# include "Templates/itkDiscreteGaussianDerivativeImageFunction+-.h"
#endif

#if ITK_TEMPLATE_TXX
# include "itkDiscreteGaussianDerivativeImageFunction.txx"
#endif

#endif