This file is indexed.

/usr/include/InsightToolkit/Numerics/itkPowellOptimizer.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkPowellOptimizer.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkPowellOptimizer_h
#define __itkPowellOptimizer_h

#include <itkVector.h>
#include <itkMatrix.h>
#include <itkSingleValuedNonLinearOptimizer.h>

namespace itk
{

/** \class PowellOptimizer
 * \brief Implements Powell optimization using Brent line search.
 *
 * The code in this class was adapted from the Wikipedia and the 
 * netlib.org zeroin function.
 *
 * http://www.netlib.org/go/zeroin.f
 * http://en.wikipedia.org/wiki/Brent_method
 * http://en.wikipedia.org/wiki/Golden_section_search
 *
 * This optimizer needs a cost function.
 * Partial derivatives of that function are not required.
 *
 * For an N-dimensional parameter space, each iteration minimizes(maximizes)
 * the function in N (initially orthogonal) directions.  Typically only 2-5
 * iterations are required.   If gradients are available, consider a conjugate
 * gradient line search strategy.
 *
 * The SetStepLength determines the initial distance to step in a line direction
 * when bounding the minimum (using bracketing triple spaced using a golden
 * search strategy).
 *
 * The StepTolerance terminates optimization when the parameter values are
 * known to be within this (scaled) distance of the local extreme.
 *
 * The ValueTolerance terminates optimization when the cost function values at
 * the current parameters and at the local extreme are likely (within a second
 * order approximation) to be within this is tolerance.
 *
 * \ingroup Numerics Optimizers
 *
 */

class ITK_EXPORT PowellOptimizer: 
    public SingleValuedNonLinearOptimizer
{
public:
  /** Standard "Self" typedef. */
  typedef PowellOptimizer                Self;
  typedef SingleValuedNonLinearOptimizer Superclass;
  typedef SmartPointer<Self>             Pointer;
  typedef SmartPointer<const Self>       ConstPointer;

  typedef SingleValuedNonLinearOptimizer::ParametersType
                                              ParametersType;
  
  /** Method for creation through the object factory. */
  itkNewMacro(Self);
 
  /** Run-time type information (and related methods). */
  itkTypeMacro(PowellOptimizer, SingleValuedNonLinearOptimizer );
  
  /** Type of the Cost Function   */
  typedef  SingleValuedCostFunction         CostFunctionType;
  typedef  CostFunctionType::Pointer        CostFunctionPointer;

  /** Set if the Optimizer should Maximize the metric */
  itkSetMacro( Maximize, bool );
  itkBooleanMacro( Maximize);
  itkGetConstReferenceMacro( Maximize, bool );

  /** Set/Get maximum iteration limit. */
  itkSetMacro( MaximumIteration, unsigned int );
  itkGetConstReferenceMacro( MaximumIteration, unsigned int );

  /** Set/Get the maximum number of line search iterations */
  itkSetMacro(MaximumLineIteration, unsigned int);
  itkGetConstMacro(MaximumLineIteration, unsigned int);

  /** Set/Get StepLength for the (scaled) spacing of the sampling of
   * parameter space while bracketing the extremum */
  itkSetMacro( StepLength, double );
  itkGetConstReferenceMacro( StepLength, double );

  /** Set/Get StepTolerance.  Once the local extreme is known to be within this
   * distance of the current parameter values, optimization terminates */
  itkSetMacro( StepTolerance, double );
  itkGetConstReferenceMacro( StepTolerance, double );

  /** Set/Get ValueTolerance.  Once this current cost function value is known
   * to be within this tolerance of the cost function value at the local
   * extreme, optimization terminates */
  itkSetMacro( ValueTolerance, double );
  itkGetConstReferenceMacro( ValueTolerance, double );

  /** Return Current Value */
  itkGetConstReferenceMacro( CurrentCost, MeasureType );
  MeasureType GetValue() const { return this->GetCurrentCost(); }

  /** Return Current Iteration */
  itkGetConstReferenceMacro( CurrentIteration, unsigned int);

  /** Get the current line search iteration */
  itkGetConstReferenceMacro( CurrentLineIteration, unsigned int);

  /** Start optimization. */
  void StartOptimization();

  /** When users call StartOptimization, this value will be set false.
   * By calling StopOptimization, this flag will be set true, and 
   * optimization will stop at the next iteration. */
  void StopOptimization() 
    { m_Stop = true; }

  itkGetConstReferenceMacro(CatchGetValueException, bool);
  itkSetMacro(CatchGetValueException, bool);

  itkGetConstReferenceMacro(MetricWorstPossibleValue, double);
  itkSetMacro(MetricWorstPossibleValue, double);

  const std::string GetStopConditionDescription() const;

protected:
  PowellOptimizer();
  PowellOptimizer(const PowellOptimizer&);
  virtual ~PowellOptimizer();
  void PrintSelf(std::ostream& os, Indent indent) const;

  itkSetMacro(CurrentCost, double);

  /** Used to specify the line direction through the n-dimensional parameter
   * space the is currently being bracketed and optimized. */
  void SetLine(const ParametersType & origin,
               const vnl_vector<double> & direction);

  /** Get the value of the n-dimensional cost function at this scalar step
   * distance along the current line direction from the current line origin.
   * Line origin and distances are set via SetLine */
  double GetLineValue(double x) const;

  double GetLineValue(double x, ParametersType & tempCoord) const;

  /** Set the given scalar step distance (x) and function value (fx) as the
   * "best-so-far" optimizer values. */
  void   SetCurrentLinePoint(double x, double fx);

  /** Used in bracketing the extreme along the current line.
   * Adapted from NRC */
  void   Swap(double *a, double *b) const;

  /** Used in bracketing the extreme along the current line.
   * Adapted from NRC */
  void   Shift(double *a, double *b, double *c, double d) const;

  /** The LineBracket routine from NRC. Later reimplemented from the description
   * of the method available in the Wikipedia.
   *
   * Uses current origin and line direction (from SetLine) to find a triple of
   * points (ax, bx, cx) that bracket the extreme "near" the origin.  Search
   * first considers the point StepLength distance from ax.
   *
   * IMPORTANT: The value of ax and the value of the function at ax (i.e., fa),
   * must both be provided to this function. */
  virtual void   LineBracket(double *ax, double *bx, double *cx,
                             double *fa, double *fb, double *fc);

  virtual void   LineBracket(double *ax, double *bx, double *cx,
                             double *fa, double *fb, double *fc,
                             ParametersType & tempCoord);

  /** Given a bracketing triple of points and their function values, returns
   * a bounded extreme.  These values are in parameter space, along the 
   * current line and wrt the current origin set via SetLine.   Optimization
   * terminates based on MaximumIteration, StepTolerance, or ValueTolerance. 
   * Implemented as Brent line optimers from NRC.  */
  virtual void   BracketedLineOptimize(double ax, double bx, double cx,
                                       double fa, double fb, double fc,
                                       double * extX, double * extVal);

  virtual void   BracketedLineOptimize(double ax, double bx, double cx,
                                       double fa, double fb, double fc,
                                       double * extX, double * extVal,
                                       ParametersType & tempCoord);

  itkGetMacro(SpaceDimension, unsigned int);
  void SetSpaceDimension( unsigned int dim )
    {
    this->m_SpaceDimension = dim;
    this->m_LineDirection.set_size( dim );
    this->m_LineOrigin.set_size( dim );
    this->m_CurrentPosition.set_size( dim );
    this->Modified();
    }

  itkSetMacro(CurrentIteration, unsigned int);

  itkGetMacro(Stop, bool);
  itkSetMacro(Stop, bool);

private:
  unsigned int       m_SpaceDimension;

  /** Current iteration */
  unsigned int       m_CurrentIteration;
  unsigned int       m_CurrentLineIteration;

  /** Maximum iteration limit. */
  unsigned int       m_MaximumIteration;
  unsigned int       m_MaximumLineIteration;

  bool               m_CatchGetValueException;
  double             m_MetricWorstPossibleValue;

  /** Set if the Metric should be maximized: Default = False */
  bool               m_Maximize;

  /** The minimal size of search */
  double             m_StepLength;
  double             m_StepTolerance;

  ParametersType     m_LineOrigin;
  vnl_vector<double> m_LineDirection;

  double             m_ValueTolerance;

  /** Internal storage for the value type / used as a cache  */
  MeasureType        m_CurrentCost;

  /** this is user-settable flag to stop optimization.
   * when users call StartOptimization, this value will be set false.
   * By calling StopOptimization, this flag will be set true, and 
   * optimization will stop at the next iteration. */
  bool               m_Stop;

  OStringStream      m_StopConditionDescription;
}; // end of class

} // end of namespace itk

#endif