/usr/include/InsightToolkit/Numerics/itkOnePlusOneEvolutionaryOptimizer.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkOnePlusOneEvolutionaryOptimizer.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkOnePlusOneEvolutionaryOptimizer_h
#define __itkOnePlusOneEvolutionaryOptimizer_h
#include <itkSingleValuedNonLinearOptimizer.h>
#include <itkRandomVariateGeneratorBase.h>
#include <string>
namespace itk
{
/** \class OnePlusOneEvolutionaryOptimizer
* \brief 1+1 evolutionary strategy optimizer
*
* This optimizer searches for the optimal parameters. It changes its search
* radius and position using the grow factor ,shrink factor, and isotropic
* probability function (which is a random unit normal variate generator).
*
* This optimizer needs a cost function and a random unit normal
* variate generator.
* The cost function should return cost with new position in parameter space
* which will be generated by 1+1 evolutionary strategy.
* Users should plug-in the random unit normal variate generator using
* SetNormalVariateGenerator method.
*
* The SetEpsilon method is the minimum value for the frobenius_norm of
* the covariance matrix. If the fnorm is smaller than this value,
* the optimization process will stop even before it hits the maximum
* iteration.
*
* Another way to stop the optimization process is calling the
* StopOptimization method. At next iteration after calling it, the
* optimization process will stop.
*
* This optimizing scheme was initially developed and implemented
* by Martin Styner, Univ. of North Carolina at Chapel Hill, and his
* colleagues.
*
* For more details. refer to the following articles.
* "Parametric estimate of intensity inhomogeneities applied to MRI"
* Martin Styner, G. Gerig, Christian Brechbuehler, Gabor Szekely,
* IEEE TRANSACTIONS ON MEDICAL IMAGING; 19(3), pp. 153-165, 2000,
* (http://www.cs.unc.edu/~styner/docs/tmi00.pdf)
*
* "Evaluation of 2D/3D bias correction with 1+1ES-optimization"
* Martin Styner, Prof. Dr. G. Gerig (IKT, BIWI, ETH Zuerich), TR-197
* (http://www.cs.unc.edu/~styner/docs/StynerTR97.pdf)
*
* \ingroup Numerics Optimizers
*
* \sa NormalVariateGenerator
*/
class ITK_EXPORT OnePlusOneEvolutionaryOptimizer:
public SingleValuedNonLinearOptimizer
{
public:
/** Standard "Self" typedef. */
typedef OnePlusOneEvolutionaryOptimizer Self;
typedef SingleValuedNonLinearOptimizer Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(OnePlusOneEvolutionaryOptimizer, SingleValuedNonLinearOptimizer );
/** Type of the Cost Function */
typedef SingleValuedCostFunction CostFunctionType;
typedef CostFunctionType::Pointer CostFunctionPointer;
/** Normal random variate generator type. */
typedef Statistics::RandomVariateGeneratorBase NormalVariateGeneratorType;
/** Set if the Optimizer should Maximize the metric */
itkSetMacro( Maximize, bool );
itkBooleanMacro( Maximize );
itkGetConstReferenceMacro( Maximize, bool );
bool GetMinimize( ) const
{ return !m_Maximize; }
void SetMinimize(bool v)
{ this->SetMaximize(!v); }
void MinimizeOn(void)
{ SetMaximize( false ); }
void MinimizeOff(void)
{ SetMaximize( true ); }
/** Set/Get maximum iteration limit. */
itkSetMacro( MaximumIteration, unsigned int );
itkGetConstReferenceMacro( MaximumIteration, unsigned int );
/** Set/Get the search radius grow factor in parameter space. */
itkSetMacro( GrowthFactor, double );
itkGetConstReferenceMacro( GrowthFactor, double );
/** Set/Get the search radius shrink factor. */
itkSetMacro( ShrinkFactor, double );
itkGetConstReferenceMacro( ShrinkFactor, double );
/** Set/Get initial search radius in parameter space */
itkSetMacro( InitialRadius, double );
itkGetConstReferenceMacro( InitialRadius, double );
/** Set/Get the minimal size of search radius
* (frobenius_norm of covariance matrix). */
itkSetMacro( Epsilon, double );
itkGetConstReferenceMacro( Epsilon, double );
/** Get the current Frobenius norm of covariance matrix */
itkGetConstReferenceMacro( FrobeniusNorm, double );
void SetNormalVariateGenerator(NormalVariateGeneratorType* generator);
/** Initializes the optimizer.
* Before running this optimizer, this function should have been called.
*
* initialRadius: search radius in parameter space
* grow: search radius grow factor
* shrink: searhc radius shrink factor */
void Initialize(double initialRadius, double grow = -1, double shrink = -1);
/** Return Current Value */
itkGetConstReferenceMacro( CurrentCost, MeasureType );
MeasureType GetValue() const { return this->GetCurrentCost(); }
/** Return Current Iteration */
itkGetConstReferenceMacro( CurrentIteration, unsigned int);
/** Return if optimizer has been initialized */
itkGetConstReferenceMacro( Initialized, bool);
/** Start optimization.
* Optimization will stop when it meets either of two termination conditions,
* the maximum iteration limit or epsilon (minimal search radius) */
void StartOptimization();
/** when users call StartOptimization, this value will be set false.
* By calling StopOptimization, this flag will be set true, and
* optimization will stop at the next iteration. */
void StopOptimization()
{ m_Stop = true; }
itkGetConstReferenceMacro(CatchGetValueException, bool);
itkSetMacro(CatchGetValueException, bool);
itkGetConstReferenceMacro(MetricWorstPossibleValue, double);
itkSetMacro(MetricWorstPossibleValue, double);
const std::string GetStopConditionDescription() const;
protected:
OnePlusOneEvolutionaryOptimizer();
OnePlusOneEvolutionaryOptimizer(const OnePlusOneEvolutionaryOptimizer&);
virtual ~OnePlusOneEvolutionaryOptimizer();
void PrintSelf(std::ostream& os, Indent indent) const;
private:
/** Smart pointer to the normal random variate generator. */
NormalVariateGeneratorType::Pointer m_RandomGenerator;
/** Maximum iteration limit. */
unsigned int m_MaximumIteration;
/** Current iteration */
unsigned int m_CurrentIteration;
bool m_CatchGetValueException;
double m_MetricWorstPossibleValue;
/** Set if the Metric should be maximized: Default = False */
bool m_Maximize;
/** The minimal size of search radius
* (frobenius_norm of covariance matrix). */
double m_Epsilon;
/** Initial search radius in paramter space. */
double m_InitialRadius;
/** Search radius growth factor in parameter space. */
double m_GrowthFactor;
/** Search radius shrink factor in parameter space, */
double m_ShrinkFactor;
/** Flag tells if the optimizer was initialized using Initialize function. */
bool m_Initialized;
/** Internal storage for the value type / used as a cache */
MeasureType m_CurrentCost;
/** This is user-settable flag to stop optimization.
* when users call StartOptimization, this value will be set false.
* By calling StopOptimization, this flag will be set true, and
* optimization will stop at the next iteration. */
bool m_Stop;
/** Stop description */
OStringStream m_StopConditionDescription;
/** Cache variable for reporting the Frobenius Norm
*/
double m_FrobeniusNorm;
}; // end of class
} // end of namespace itk
#endif
|