This file is indexed.

/usr/include/InsightToolkit/Numerics/itkMultivariateLegendrePolynomial.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*=========================================================================

Program:   Insight Segmentation & Registration Toolkit
Module:    itkMultivariateLegendrePolynomial.h
Language:  C++
Date:      $Date$
Version:   $Revision$

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even 
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkMultivariateLegendrePolynomial_h
#define __itkMultivariateLegendrePolynomial_h

#include "itkIndent.h"
#include <vector>
#include "itkArray.h"

namespace itk {

/** \class MultivariateLegendrePolynomial
 * \brief 2D and 3D multivariate Legendre Polynomial 
 *
 * In 2D, 
 * \f[
 *  f(x_{vector}, parameter_{vector}) =
 * \sum_i^l \left( 
 * \sum_j^{l-i} \left( parameter_ {ij} * P_i(x) *P_j(y)) \right) \right)  
 * \f]
 * where P_i() denoting a Legendre polynomial of degree i
 * and l it the degree of the polynomial
 *
 * In 3D,
 * \f[
 * f(x_{vector}, parameter_{vector}) =
 * \sum_i^l \left( \sum_j^{l-i} \left( \sum_k^{l-i-j} \left( 
 * parameter_{ijk} * P_i(x) * P_j(y) * P_k(z) \right) \right) \right) 
 * \f]
 *
 * The size of the parameter vector for 2D is 
 * \f$\frac{(l+1)\cdot(1+2)}{2}\f$,
 * and for 3D is \f$\frac{(l+1)*(l+2)*(l+3){3!}\f$
 *
 * To get the size of the parameter vector, users can use one of the 
 * two GetNumberOfCoefficients() member functions
 *
 * To get function result, users can use the operator() or its 
 * SimpleForwardIterator's Get() method.
 *
 * This is a part of the bias correction methods and implemenations 
 * that was initially developed and implemented 
 * by Martin Styner, Univ. of North Carolina at Chapel Hill, and his
 * colleagues.
 *
 * \note For more details. refer to the following articles.
 * "Parametric estimate of intensity inhomogeneities applied to MRI" 
 * Martin Styner, G. Gerig, Christian Brechbuehler, Gabor Szekely,  
 * IEEE TRANSACTIONS ON MEDICAL IMAGING; 19(3), pp. 153-165, 2000, 
 * (http://www.ia.unc.edu/~styner/docs/tmi00.pdf)
 *
 * "Evaluation of 2D/3D bias correction with 1+1ES-optimization" 
 * Martin Styner, Prof. Dr. G. Gerig (IKT, BIWI, ETH Zuerich), TR-197
 * (http://www.ia.unc.edu/~styner/docs/StynerTR97.pdf)
 */

class ITK_EXPORT MultivariateLegendrePolynomial
{
public:
  typedef MultivariateLegendrePolynomial Self;

  typedef std::vector< double >        DoubleArrayType;
  typedef std::vector< unsigned long > ULongArrayType;
  typedef std::vector< long >          LongArrayType;

  /** Internal coefficient storage type. */
  typedef DoubleArrayType CoefficientArrayType;

  /** Same as CoefficientArray
   * This type definition will be used by EnergyFunction object. */
  typedef Array< double > ParametersType;

  /** The size of the domain. */
  typedef ULongArrayType DomainSizeType;
  typedef LongArrayType  IndexType;
  
  /** Constructor. */
  MultivariateLegendrePolynomial( unsigned int dimension, 
                                  unsigned int degree,
                                  const DomainSizeType & domainSize );
  /** Destructor. */
  virtual ~MultivariateLegendrePolynomial();

  /** Gets the dimension. */
  unsigned int GetDimension(void) const 
    { return m_Dimension; }

  /** Gets the degree (the degree of Legendre polynomials). */ 
  unsigned int GetDegree(void) const 
    { return m_Degree; } 

  /** Returns the number of coefficients of the polynomial  
   *  This number is computed from the degree of the polynomial 
   *  the SetCoefficients() method expects an array of this 
   *  size, an exception is thrown otherwise
   *  \sa SetCoefficients
   */
  unsigned int GetNumberOfCoefficients(void) const
    { return m_NumberOfCoefficients; }

  /** Gets each dimesion's size. */
  const DomainSizeType & GetDomainSize( void ) const 
    { return m_DomainSize; }

  /** \class CoefficientVectorSizeMismatch Exception object. */
  class CoefficientVectorSizeMismatch 
    {
  public:
    CoefficientVectorSizeMismatch(int given, int required)
      {
      m_Required = required;
      m_Given = given;
      }
    
    int m_Required;
    int m_Given;
    };

  /** \brief Sets the Legendre polynomials' parameters. 
   * \warning The number of coefficients provided should
   * match the number returned by GetNumberOfCoefficients()
   * otherwise an exception is thrown.  */
  void SetCoefficients(const CoefficientArrayType& coef) 
    throw (CoefficientVectorSizeMismatch);

  void SetCoefficients(const ParametersType& coef) 
    throw (CoefficientVectorSizeMismatch);

  /** \brief Gets Legendre polynomials' coefficients. */
  const CoefficientArrayType& GetCoefficients(void) const;
 
  /** In the case which the bias field is 2D, it returns bias value at
   * the point which is specified by the index */
  double Evaluate(IndexType& index) 
    {
    if (m_Dimension == 2)
      {
      if (index[1] != m_PrevY)
        {
        // normalized y [-1, 1]
        double norm_y =  m_NormFactor[1] *
          static_cast<double>( index[1] - 1 );
        this->CalculateXCoef(norm_y, m_CoefficientArray);
        m_PrevY = index[1];
        }
        
      // normalized x [-1, 1]
      double norm_x =  m_NormFactor[0] *
        static_cast<double>( index[0] - 1 );
        
      return LegendreSum(norm_x, m_Degree, m_CachedXCoef);
      }
    else if (m_Dimension == 3)
      {
      if (index[2] != m_PrevZ )
        {
        // normalized z [-1, 1]  
        double norm_z =  m_NormFactor[2] *
          static_cast<double>( index[2] - 1 );
        this->CalculateYCoef(norm_z, m_CoefficientArray);
        m_PrevZ = index[2];
        }
        
      if (index[1] != m_PrevY)
        {
        // normalized y [-1, 1]
        double norm_y =  m_NormFactor[1] *
          static_cast<double>( index[1] - 1 ); 
        this->CalculateXCoef(norm_y, m_CachedYCoef);
        m_PrevY = index[1];
        }
        
      // normalized x [-1, 1]
      double norm_x =  m_NormFactor[0] *
        static_cast<double>( index[0] - 1 ); 
      return this->LegendreSum(norm_x, m_Degree, m_CachedXCoef);
      }
    return 0;
    }

  /** Gets the number of coefficients. */
  unsigned int GetNumberOfCoefficients();

  /** Gets the number of coefficients. */
  unsigned int GetNumberOfCoefficients(unsigned int dimension, unsigned int degree);

  /** \class SimpleForwardIterator
   * \brief Iterator which only supports forward iteration and
   * Begin(), IsAtEnd(), and Get() method which work just like as
   * SimpleImageRegionIterator.
   */
  class SimpleForwardIterator
    {
    public:
      SimpleForwardIterator (MultivariateLegendrePolynomial* polynomial) 
      {
      m_MultivariateLegendrePolynomial = polynomial;
      m_Dimension   = m_MultivariateLegendrePolynomial->GetDimension();
      m_DomainSize  = m_MultivariateLegendrePolynomial->GetDomainSize();
      m_Index.resize(m_Dimension);
      std::fill(m_Index.begin(), m_Index.end(), 0);
      }
    
    void Begin( void ) 
      { 
      m_IsAtEnd = false;
      for (unsigned int dim = 0; dim < m_Dimension; dim++)
        {
        m_Index[dim] = 0;
        }
      }
      
    bool IsAtEnd()
      { return m_IsAtEnd; }
    
    SimpleForwardIterator& operator++()
      {
      for (unsigned int dim = 0; dim < m_Dimension; dim++)
        {
        if (m_Index[dim] < static_cast<int>(m_DomainSize[dim] - 1))
          {
          m_Index[dim] += 1;
          return *this;
          }
        else
          {
          if (dim == m_Dimension - 1 )
            {
            m_IsAtEnd = true;
            break;
            }
          else
            {
            m_Index[dim] = 0;
            }
          }
        }
      return *this;
      }
      
    double Get()
      { return m_MultivariateLegendrePolynomial->Evaluate(m_Index); }
    
  private:
    MultivariateLegendrePolynomial* m_MultivariateLegendrePolynomial;
    unsigned int      m_Dimension; 
    DomainSizeType    m_DomainSize;
    IndexType         m_Index;
    bool              m_IsAtEnd;
    }; // end of class Iterator 
  
  void Print(std::ostream& os);

protected:
  void PrintSelf(std::ostream& os, Indent indent) const;
  double LegendreSum(const double x, int n, 
                     const CoefficientArrayType& coef,
                     int offset = 0); 
  void CalculateXCoef(double norm_y, const CoefficientArrayType& coef);
  void CalculateYCoef(double norm_z, const CoefficientArrayType& coef);

private:
  DomainSizeType m_DomainSize;
  unsigned int   m_Dimension;
  unsigned int   m_Degree;
  unsigned int   m_NumberOfCoefficients;
  bool           m_MultiplicativeBias; 
  
  CoefficientArrayType m_CoefficientArray;
  CoefficientArrayType m_CachedXCoef;
  CoefficientArrayType m_CachedYCoef;
  CoefficientArrayType m_CachedZCoef;

  DoubleArrayType m_NormFactor;
  long            m_PrevY;
  long            m_PrevZ;
}; // end of class

std::ostream& operator<< (std::ostream& os, 
                          MultivariateLegendrePolynomial& poly);
} // end of namespace itk
#endif