This file is indexed.

/usr/include/InsightToolkit/Numerics/itkGradientDescentOptimizer.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGradientDescentOptimizer.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGradientDescentOptimizer_h
#define __itkGradientDescentOptimizer_h

#include "itkSingleValuedNonLinearOptimizer.h"
#include <string>
namespace itk
{
  
/** \class GradientDescentOptimizer
 * \brief Implement a gradient descent optimizer
 *
 * GradientDescentOptimizer implements a simple gradient descent optimizer.
 * At each iteration the current position is updated according to
 *
 * \f[ 
 *        p_{n+1} = p_n 
 *                + \mbox{learningRate} 
                  \, \frac{\partial f(p_n) }{\partial p_n} 
 * \f]
 *
 * The learning rate is a fixed scalar defined via SetLearningRate().
 * The optimizer steps through a user defined number of iterations;
 * no convergence checking is done.
 *
 * Additionally, user can scale each component of the df / dp
 * but setting a scaling vector using method SetScale().
 *
 * \sa RegularStepGradientDescentOptimizer
 * 
 * \ingroup Numerics Optimizers
 */  
class ITK_EXPORT GradientDescentOptimizer : 
    public SingleValuedNonLinearOptimizer
{
public:
  /** Standard class typedefs. */
  typedef GradientDescentOptimizer          Self;
  typedef SingleValuedNonLinearOptimizer    Superclass;
  typedef SmartPointer<Self>                Pointer;
  typedef SmartPointer<const Self>          ConstPointer;
  
  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro( GradientDescentOptimizer, SingleValuedNonLinearOptimizer );


  /** Codes of stopping conditions */
  typedef enum
    {
    MaximumNumberOfIterations,
    MetricError
    } StopConditionType;

  /** Methods to configure the cost function. */
  itkGetConstReferenceMacro( Maximize, bool );
  itkSetMacro( Maximize, bool );
  itkBooleanMacro( Maximize );
  bool GetMinimize( ) const
    { return !m_Maximize; }
  void SetMinimize(bool v)
    { this->SetMaximize(!v); }
  void MinimizeOn()
    { this->MaximizeOff(); }
  void MinimizeOff()
    { this->MaximizeOn(); }
  
  /** Advance one step following the gradient direction. */
  virtual void AdvanceOneStep( void );

  /** Start optimization. */
  void    StartOptimization( void );

  /** Resume previously stopped optimization with current parameters
   * \sa StopOptimization. */
  void    ResumeOptimization( void );

  /** Stop optimization.
   * \sa ResumeOptimization */
  void    StopOptimization( void );

  /** Set the learning rate. */
  itkSetMacro( LearningRate, double );

  /** Get the learning rate. */
  itkGetConstReferenceMacro( LearningRate, double);

  /** Set the number of iterations. */
  itkSetMacro( NumberOfIterations, unsigned long );

  /** Get the number of iterations. */
  itkGetConstReferenceMacro( NumberOfIterations, unsigned long );

  /** Get the current iteration number. */
  itkGetConstMacro( CurrentIteration, unsigned long );

  /** Get the current value. */
  itkGetConstReferenceMacro( Value, double );

  /** Get Stop condition. */
  itkGetConstReferenceMacro( StopCondition, StopConditionType );
  const std::string GetStopConditionDescription() const;

  /** Get Gradient condition. */
  itkGetConstReferenceMacro( Gradient, DerivativeType );

protected:
  GradientDescentOptimizer();
  virtual ~GradientDescentOptimizer() {};
  void PrintSelf(std::ostream& os, Indent indent) const;


  // made protected so subclass can access
  DerivativeType                m_Gradient; 
  bool                          m_Maximize;
  double                        m_LearningRate;

private:
  GradientDescentOptimizer(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented
  
  bool                          m_Stop;
  double                        m_Value;
  StopConditionType             m_StopCondition;
  unsigned long                 m_NumberOfIterations;
  unsigned long                 m_CurrentIteration;
  OStringStream                 m_StopConditionDescription;
};

} // end namespace itk


#endif