/usr/include/InsightToolkit/Numerics/itkExhaustiveOptimizer.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkExhaustiveOptimizer.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkExhaustiveOptimizer_h
#define __itkExhaustiveOptimizer_h
#include "itkSingleValuedNonLinearOptimizer.h"
namespace itk
{
/** \class ExhaustiveOptimizer
* \brief Optimizer that fully samples a grid on the parametric space.
*
* This optimizer is equivalent to an exahaustive search in a discrete grid
* defined over the parametric space. The grid is centered on the initial
* position. The subdivisions of the grid along each one of the dimensions
* of the parametric space is defined by an array of number of steps.
*
* A typical use is to plot the metric space to get an idea of how noisy it
* is. An example is given below, where it is desired to plot the metric
* space with respect to translations along x, y and z in a 3D registration
* application:
* Here it is assumed that the transform is Euler3DTransform.
*
* \code
*
* OptimizerType::StepsType steps( m_Transform->GetNumberOfParameters() );
* steps[1] = 10;
* steps[2] = 10;
* steps[3] = 10;
* m_Optimizer->SetNumberOfSteps( steps );
* m_Optimizer->SetStepLength( 2 );
*
* \endcode
*
* The optimizer throws IterationEvents after every iteration. We use this to plot
* the metric space in an image as follows:
*
* \code
*
* if( itk::IterationEvent().CheckEvent(& event ) )
* {
* IndexType index;
* index[0] = m_Optimizer->GetCurrentIndex()[0];
* index[1] = m_Optimizer->GetCurrentIndex()[1];
* index[2] = m_Optimizer->GetCurrentIndex()[2];
* image->SetPixel( index, m_Optimizer->GetCurrentValue() );
* }
*
* \endcode
*
* The image size is expected to be 11 x 11 x 11.
*
* If you wish to use different step lengths along each parametric axis,
* you can use the SetScales() method. This accepts an array, each element
* represents the number of subdivisions per step length. For instance scales
* of [0.5 1 4] along with a step length of 2 will cause the optimizer
* to search the metric space on a grid with x,y,z spacing of [1 2 8].
*
* Physical dimensions of the grid are influenced by both the scales and
* the number of steps along each dimension, a side of the region is
* stepLength*(2*numberOfSteps[d]+1)*scaling[d].
*
* \ingroup Numerics Optimizers
*/
class ITK_EXPORT ExhaustiveOptimizer :
public SingleValuedNonLinearOptimizer
{
public:
/** Standard "Self" typedef. */
typedef ExhaustiveOptimizer Self;
typedef SingleValuedNonLinearOptimizer Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
typedef Array< unsigned long > StepsType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro( ExhaustiveOptimizer, SingleValuedNonLinearOptimizer );
virtual void StartOptimization( void );
void StartWalking( void );
void ResumeWalking( void );
void StopWalking(void);
itkSetMacro( StepLength, double );
itkSetMacro( NumberOfSteps, StepsType );
itkGetConstReferenceMacro( StepLength, double );
itkGetConstReferenceMacro( NumberOfSteps, StepsType );
itkGetConstReferenceMacro( CurrentValue, MeasureType );
itkGetConstReferenceMacro( MaximumMetricValue, MeasureType );
itkGetConstReferenceMacro( MinimumMetricValue, MeasureType );
itkGetConstReferenceMacro( MinimumMetricValuePosition, ParametersType );
itkGetConstReferenceMacro( MaximumMetricValuePosition, ParametersType );
itkGetConstReferenceMacro( CurrentIndex, ParametersType );
itkGetConstReferenceMacro( MaximumNumberOfIterations, unsigned long );
/** Get the reason for termination */
const std::string GetStopConditionDescription() const;
protected:
ExhaustiveOptimizer();
virtual ~ExhaustiveOptimizer() {};
void PrintSelf(std::ostream& os, Indent indent) const;
/** Advance to the next grid position. */
void AdvanceOneStep( void );
void IncrementIndex( ParametersType & param );
protected:
MeasureType m_CurrentValue;
StepsType m_NumberOfSteps;
unsigned long m_CurrentIteration;
bool m_Stop;
unsigned int m_CurrentParameter;
double m_StepLength;
ParametersType m_CurrentIndex;
unsigned long m_MaximumNumberOfIterations;
MeasureType m_MaximumMetricValue;
MeasureType m_MinimumMetricValue;
ParametersType m_MinimumMetricValuePosition;
ParametersType m_MaximumMetricValuePosition;
private:
ExhaustiveOptimizer(const Self&); //purposely not implemented
void operator=(const Self&);//purposely not implemented
OStringStream m_StopConditionDescription;
};
} // end namespace itk
#endif
|