This file is indexed.

/usr/include/InsightToolkit/Numerics/itkCompositeValleyFunction.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkCompositeValleyFunction.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkCompositeValleyFunction_h
#define __itkCompositeValleyFunction_h

#include "itkArray.h"
#include "itkCacheableScalarFunction.h"
#include <vector>

namespace itk {

/** \class CompositeValleyFunction
 * \brief Multiple valley shaped curve function   
 *
 * Its functional form f(x) is :
 * sum (valley( (x - mean[i]) / sigma[i] ) ) 
 * over i from 0 to the number of target classes
 * where valley(x) = 1 - 1 / (1 + x^2 / 3) 
 * 
 * The plotting of the function return shows multiple lowest points at each
 * mean[i] position. There are two more important shape parameters for this
 * function, higher-bound and lower-bound. Upper-bound will be highest mean
 * value among target classes' means + its sigma value * 9, and lower-bound
 * will be lowest mean value among target classes' means - its sigma value * 9
 * 
 * For example, if there are two target classes with their means at 4 and 6.
 * The plotting may look like the following:
 *
 *    |
 *    |*********               ******
 *    |         *             *
 *    |          *    *      *  
 *    |           *  *  *   *
 *    |           * *    * *
 *    |           * *    * *
 *    |            *      *
 * ---+-----+------*------*-------
 *    |     2      4      6
 *    |
 * 
 *
 * This is a part of the bias correction methods and implementaion that
 * was initially developed and implemented 
 * by Martin Styner, Univ. of North Carolina at Chapel Hill, and his
 * colleagues.
 *
 * For more details. refer to the following articles.
 * "Parametric estimate of intensity inhomogeneities applied to MRI" 
 * Martin Styner, G. Gerig, Christian Brechbuehler, Gabor Szekely,  
 * IEEE TRANSACTIONS ON MEDICAL IMAGING; 19(3), pp. 153-165, 2000, 
 * (http://www.cs.unc.edu/~styner/docs/tmi00.pdf)
 *
 * "Evaluation of 2D/3D bias correction with 1+1ES-optimization" 
 * Martin Styner, Prof. Dr. G. Gerig (IKT, BIWI, ETH Zuerich), TR-197
 * (http://www.cs.unc.edu/~styner/docs/StynerTR97.pdf)
 */
class TargetClass
{
public:
  /** Constructor. */
  TargetClass(double mean, double sigma) 
    { 
    m_Mean = mean;
    m_Sigma = sigma;
    }
  
  /** Set/Get the mean of the function. */
  void SetMean(double mean) { m_Mean = mean; }  
  double GetMean() { return m_Mean; } 
  
  /** Set/Get the standard deviation of the function. */
  void SetSigma(double sigma) { m_Sigma = sigma; }
  double GetSigma() { return m_Sigma; }
    
private:
  double m_Mean;
  double m_Sigma;
}; // end of class 

class CompositeValleyFunction : public CacheableScalarFunction
{
public:

  /** Superclass to this class. */
  typedef CacheableScalarFunction Superclass;
  
  /** Cost value type. */
  typedef  Superclass::MeasureType          MeasureType;
  typedef  Superclass::MeasureArrayType     MeasureArrayType;

  /** Constructor. */
  CompositeValleyFunction( const MeasureArrayType & classMeans, 
                           const MeasureArrayType & classSigmas );

  /** Destructor. */
  virtual ~CompositeValleyFunction() {}

  /** Get energy table's higher bound. */
  double GetUpperBound() { return m_UpperBound; }

  /** Get energy table's lower bound. */
  double GetLowerBound() { return m_LowerBound; }

  /** Gets an energy value for the intensity difference between a pixel
   * and its corresponding bias. */
  MeasureType operator() (MeasureType x)
    {
    if (x > m_UpperBound || x < m_LowerBound)
      {
      return 1;
      }

    if (!this->IsCacheAvailable()) 
      {
      return this->Evaluate(x);
      } 
    else 
      {
      return GetCachedValue(x);
      }
    }

  /** Evalaute the function at point x.  */
  inline MeasureType Evaluate(MeasureType x) 
    {
    MeasureType res = 1;
    
    for (unsigned int k = 0; k < m_Targets.size(); k++)
      {
      res *= valley( ( x - m_Targets[k].GetMean() ) /
                     m_Targets[k].GetSigma() );
      }
    
    return res;
    }   

  /** Get an energy value for the valley. */
  inline MeasureType valley(MeasureType d) 
    {
    return 1 - 1 / (1+d*d/3);
    }

protected:
  void AddNewClass(double mean, double sigma)
  {
    TargetClass aClass(mean, sigma);
    m_Targets.push_back(aClass);
  }

  /** calculate and save energy values  */
  void Initialize();

private:
  /** Storage for tissue classes' statistics. */
  std::vector<TargetClass> m_Targets;  

  /** The highest mean value + the sigma of the tissue class 
   * which has the highest mean value * 9. */
  double m_UpperBound;

  /** The lowest mean value - the sigma of the tissue class 
   * which has the lowest mean value * 9. */
  double m_LowerBound;

}; // end of class

} // end of namespace itk
#endif