/usr/include/InsightToolkit/Common/itkWindowedSincInterpolateImageFunction.h is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkWindowedSincInterpolateImageFunction.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkWindowedSincInterpolateImageFunction_h
#define __itkWindowedSincInterpolateImageFunction_h
#include "itkConstNeighborhoodIterator.h"
#include "itkConstantBoundaryCondition.h"
#include "itkInterpolateImageFunction.h"
namespace itk
{
namespace Function {
/**
* \class CosineWindowFunction
* \brief Window function for sinc interpolation.
* \f[ w(x) = cos(\frac{\pi x}{2 m} ) \f]
* \sa WindowedSincInterpolateImageFunction
*/
template< unsigned int VRadius,
class TInput=double, class TOutput=double>
class CosineWindowFunction
{
public:
inline TOutput operator()( const TInput & A ) const
{ return (TOutput) vcl_cos(A * m_Factor ); }
private:
/** Equal to \f$ \frac{\pi}{2 m} \f$ */
static const double m_Factor;
};
/**
* \class HammingWindowFunction
* \brief Window function for sinc interpolation.
* \f[ w(x) = 0.54 + 0.46 cos(\frac{\pi x}{m} ) \f]
* \sa WindowedSincInterpolateImageFunction
*/
template< unsigned int VRadius,
class TInput=double, class TOutput=double>
class HammingWindowFunction
{
public:
inline TOutput operator()( const TInput & A ) const
{ return (TOutput) 0.54 + 0.46 * vcl_cos(A * m_Factor ); }
private:
/** Equal to \f$ \frac{\pi}{m} \f$ */
static const double m_Factor;
};
/**
* \class WelchWindowFunction
* \brief Window function for sinc interpolation.
* \f[ w(x) = 1 - ( \frac{x^2}{m^2} ) \f]
* \sa WindowedSincInterpolateImageFunction
*/
template< unsigned int VRadius,
class TInput=double, class TOutput=double>
class WelchWindowFunction
{
public:
inline TOutput operator()( const TInput & A ) const
{ return (TOutput) (1.0 - A * m_Factor * A); }
private:
/** Equal to \f$ \frac{1}{m^2} \f$ */
static const double m_Factor;
};
/**
* \class LanczosWindowFunction
* \brief Window function for sinc interpolation.
* \f[ w(x) = \textrm{sinc} ( \frac{x}{m} ) \f]
* Note: Paper referenced in WindowedSincInterpolateImageFunction gives
* an incorrect definition of this window function.
* \sa WindowedSincInterpolateImageFunction
*/
template< unsigned int VRadius,
class TInput=double, class TOutput=double>
class LanczosWindowFunction
{
public:
inline TOutput operator()( const TInput & A ) const
{
if(A == 0.0) return (TOutput) 1.0;
double z = m_Factor * A;
return (TOutput) ( vcl_sin(z) / z );
}
private:
/** Equal to \f$ \frac{\pi}{m} \f$ */
static const double m_Factor;
};
/**
* \class BlackmanWindowFunction
* \brief Window function for sinc interpolation.
* \f[ w(x) = 0.42 + 0.5 cos(\frac{\pi x}{m}) + 0.08 cos(\frac{2 \pi x}{m}) \f]
* \sa WindowedSincInterpolateImageFunction
*/
template< unsigned int VRadius,
class TInput=double, class TOutput=double>
class BlackmanWindowFunction
{
public:
inline TOutput operator()( const TInput & A ) const
{
return (TOutput)
(0.42 + 0.5 * vcl_cos(A * m_Factor1) + 0.08 * vcl_cos(A * m_Factor2));
}
private:
/** Equal to \f$ \frac{\pi}{m} \f$ */
static const double m_Factor1;
/** Equal to \f$ \frac{2 \pi}{m} \f$ */
static const double m_Factor2;
};
} // namespace Function
/**
* \class WindowedSincInterpolateImageFunction
* \brief Use the windowed sinc function to interpolate
* \author Paul A. Yushkevich
*
* \par THEORY
*
* This function is intended to provide an interpolation function that
* has minimum aliasing artifacts, in contrast to linear interpolation.
* According to sampling theory, the infinite-support sinc filter,
* whose Fourier transform is the box filter, is optimal for resampling
* a function. In practice, the infinite support sinc filter is
* approximated using a limited support 'windowed' sinc filter.
*
* \par
* This function is based on the following publication:
*
* \par
* Erik H. W. Meijering, Wiro J. Niessen, Josien P. W. Pluim,
* Max A. Viergever: Quantitative Comparison of Sinc-Approximating
* Kernels for Medical Image Interpolation. MICCAI 1999, pp. 210-217
*
* \par
* In this work, several 'windows' are estimated. In two dimensions, the
* interpolation at a position (x,y) is given by the following
* expression:
*
* \par
* \f[
* I(x,y) =
* \sum_{i = \lfloor x \rfloor + 1 - m}^{\lfloor x \rfloor + m}
* \sum_{j = \lfloor y \rfloor + 1 - m}^{\lfloor y \rfloor + m}
* I_{i,j} K(x-i) K(y-j),
* \f]
*
* \par
* where m is the 'radius' of the window, (3,4 are reasonable numbers),
* and K(t) is the kernel function, composed of the sinc function and
* one of several possible window functions:
*
* \par
* \f[
* K(t) = w(t) \textrm{sinc}(t) = w(t) \frac{\sin(\pi t)}{\pi t}
* \f]
*
* \par
* Several window functions are provided here in the itk::Function
* namespace. The conclusions of the referenced paper suggest to use the
* Welch, Cosine, Kaiser, and Lanczos windows for m = 4,5. These are based
* on error in rotating medical images w.r.t. the linear interpolation
* method. In some cases the results achieve a 20-fold improvement in
* accuracy.
*
* \par USING THIS FILTER
*
* Use this filter the way you would use any ImageInterpolationFunction,
* so for instance, you can plug it into the ResampleImageFilter class.
* In order to initialize the filter you must choose several template
* parameters.
*
* \par
* The first (TInputImage) is the image type, that's standard.
*
* \par
* The second (VRadius) is the radius of the kernel, i.e., the
* \f$ m \f$ from the formula above.
*
* \par
* The third (TWindowFunction) is the window function object, which you
* can choose from about five different functions defined in this
* header. The default is the Hamming window, which is commonly used
* but not optimal according to the cited paper.
*
* \par
* The fourth (TBoundaryCondition) is the boundary condition class used
* to determine the values of pixels that fall off the image boundary.
* This class has the same meaning here as in the NeighborhoodItetator
* classes.
*
* \par
* The fifth (TCoordRep) is again standard for interpolating functions,
* and should be float or double.
*
* \par CAVEATS
*
* There are a few improvements that an enthusiasting ITK developer
* could make to this filter. One issue is with the way that the kernel
* is applied. The computational expense comes from two sources:
* computing the kernel weights K(t) and multiplying the pixels in the
* window by the kernel weights. The first is done more or less
* efficiently in \f$ 2 m d \f$ operations (where d is the
* dimensionality of the image). The second can be done
* better. Presently, each pixel \f$ I(i,j,k) \f$ is multiplied by the
* weights \f$ K(x-i), K(y-j), K(z-k) \f$ and added to the running
* total. This results in \f$ d (2m)^d \f$ multiplication
* operations. However, by keeping intermediate sums, it would be
* possible to do the operation in \f$ O ( (2m)^d ) \f$
* operations. This would require some creative coding. In addition, in
* the case when one of the coordinates is integer, the computation
* could be reduced by an order of magnitude.
*
* \sa LinearInterpolateImageFunction ResampleImageFilter
* \sa Function::HammingWindowFunction
* \sa Function::CosineWindowFunction
* \sa Function::WelchWindowFunction
* \sa Function::LanczosWindowFunction
* \sa Function::BlackmanWindowFunction
* \ingroup ImageFunctions ImageInterpolators
*/
template <
class TInputImage,
unsigned int VRadius,
class TWindowFunction = Function::HammingWindowFunction<VRadius>,
class TBoundaryCondition = ConstantBoundaryCondition<TInputImage>,
class TCoordRep=double >
class ITK_EXPORT WindowedSincInterpolateImageFunction :
public InterpolateImageFunction<TInputImage, TCoordRep>
{
public:
/** Standard class typedefs. */
typedef WindowedSincInterpolateImageFunction Self;
typedef InterpolateImageFunction<TInputImage,TCoordRep> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(WindowedSincInterpolateImageFunction,
InterpolateImageFunction);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** OutputType typedef support. */
typedef typename Superclass::OutputType OutputType;
/** InputImageType typedef support. */
typedef typename Superclass::InputImageType InputImageType;
/** RealType typedef support. */
typedef typename Superclass::RealType RealType;
/** Dimension underlying input image. */
itkStaticConstMacro(ImageDimension, unsigned int,Superclass::ImageDimension);
/** Index typedef support. */
typedef typename Superclass::IndexType IndexType;
typedef typename Superclass::IndexValueType IndexValueType;
/** Image type definition */
typedef TInputImage ImageType;
/** ContinuousIndex typedef support. */
typedef typename Superclass::ContinuousIndexType ContinuousIndexType;
virtual void SetInputImage(const ImageType *image);
/** Evaluate the function at a ContinuousIndex position
*
* Returns the interpolated image intensity at a
* specified point position. Bounds checking is based on the
* type of the TBoundaryCondition specified.
*/
virtual OutputType EvaluateAtContinuousIndex(
const ContinuousIndexType & index ) const;
protected:
WindowedSincInterpolateImageFunction();
virtual ~WindowedSincInterpolateImageFunction();
void PrintSelf(std::ostream& os, Indent indent) const;
private:
WindowedSincInterpolateImageFunction( const Self& ); //not implemented
void operator=( const Self& ); //purposely not implemented
// Internal typedefs
typedef ConstNeighborhoodIterator<
ImageType, TBoundaryCondition> IteratorType;
// Constant to store twice the radius
static const unsigned int m_WindowSize;
/** The function object, used to compute window */
TWindowFunction m_WindowFunction;
/** The offset array, used to keep a list of relevant
* offsets in the neihborhoodIterator */
unsigned int *m_OffsetTable;
/** Size of the offset table */
unsigned int m_OffsetTableSize;
/** Index into the weights array for each offset */
unsigned int **m_WeightOffsetTable;
/** The sinc function */
inline double Sinc(double x) const
{
double px = vnl_math::pi * x;
return (x == 0.0) ? 1.0 : vcl_sin(px) / px;
}
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkWindowedSincInterpolateImageFunction.txx"
#endif
#endif // _itkWindowedSincInterpolateImageFunction_h
|