/usr/include/InsightToolkit/Common/itkGaussianDerivativeSpatialFunction.txx is in libinsighttoolkit3-dev 3.20.1+git20120521-6build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | /*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkGaussianDerivativeSpatialFunction.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGaussianDerivativeSpatialFunction_txx
#define __itkGaussianDerivativeSpatialFunction_txx
#include <math.h>
#include "itkGaussianDerivativeSpatialFunction.h"
namespace itk
{
template <typename TOutput, unsigned int VImageDimension, typename TInput>
GaussianDerivativeSpatialFunction<TOutput, VImageDimension, TInput>
::GaussianDerivativeSpatialFunction()
{
m_Mean = ArrayType::Filled(0.0);
m_Sigma = ArrayType::Filled(1.0);
m_Scale = 1.0;
m_Normalized = false;
m_Direction = 0;
}
template <typename TOutput, unsigned int VImageDimension, typename TInput>
GaussianDerivativeSpatialFunction<TOutput, VImageDimension, TInput>
::~GaussianDerivativeSpatialFunction()
{
}
template <typename TOutput, unsigned int VImageDimension, typename TInput>
typename GaussianDerivativeSpatialFunction<TOutput, VImageDimension, TInput>::OutputType
GaussianDerivativeSpatialFunction<TOutput, VImageDimension, TInput>
::Evaluate(const TInput& position) const
{
// Normalizing the Gaussian is important for statistical applications
// but is generally not desirable for creating images because of the
// very small numbers involved (would need to use doubles)
double prefixDenom;
if (m_Normalized)
{
prefixDenom = m_Sigma[m_Direction]*m_Sigma[m_Direction];
for(unsigned int i = 0; i < VImageDimension; i++)
{
prefixDenom *= m_Sigma[i];
}
prefixDenom *= 2*vcl_pow( 2 * vnl_math::pi, VImageDimension / 2.0);
}
else
{
prefixDenom = 1.0;
}
double suffixExp = 0;
for(unsigned int i = 0; i < VImageDimension; i++)
{
suffixExp += (position[m_Direction] - m_Mean[m_Direction])*(position[m_Direction] - m_Mean[m_Direction]) / (2 * m_Sigma[m_Direction] * m_Sigma[m_Direction]);
}
double value = -2*(position[m_Direction] - m_Mean[m_Direction])*m_Scale * (1 / prefixDenom) * vcl_exp(-1 * suffixExp);
return (TOutput) value;
}
/** Evaluate the function at a given position and return a vector */
template <typename TOutput, unsigned int VImageDimension, typename TInput>
typename GaussianDerivativeSpatialFunction<TOutput, VImageDimension, TInput>::VectorType
GaussianDerivativeSpatialFunction<TOutput, VImageDimension, TInput>
::EvaluateVector(const TInput& position) const
{
VectorType gradient;
for(unsigned int i = 0; i < VImageDimension; i++)
{
m_Direction = i;
gradient[i]=this->Evaluate(position);
}
return gradient;
}
template <typename TOutput, unsigned int VImageDimension, typename TInput>
void
GaussianDerivativeSpatialFunction<TOutput, VImageDimension, TInput>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Sigma: " << m_Sigma << std::endl;
os << indent << "Mean: " << m_Mean << std::endl;
os << indent << "Scale: " << m_Scale << std::endl;
os << indent << "Normalized?: " << m_Normalized << std::endl;
os << indent << "Direction: " << m_Direction << std::endl;
}
} // end namespace itk
#endif
|