This file is indexed.

/usr/lib/hugs/packages/base/Control/Arrow.hs is in libhugs-base-bundled 98.200609.21-5.4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
-----------------------------------------------------------------------------
-- |
-- Module      :  Control.Arrow
-- Copyright   :  (c) Ross Paterson 2002
-- License     :  BSD-style (see the LICENSE file in the distribution)
--
-- Maintainer  :  ross@soi.city.ac.uk
-- Stability   :  experimental
-- Portability :  portable
--
-- Basic arrow definitions, based on
--	/Generalising Monads to Arrows/, by John Hughes,
--	/Science of Computer Programming/ 37, pp67-111, May 2000.
-- plus a couple of definitions ('returnA' and 'loop') from
--	/A New Notation for Arrows/, by Ross Paterson, in /ICFP 2001/,
--	Firenze, Italy, pp229-240.
-- See these papers for the equations these combinators are expected to
-- satisfy.  These papers and more information on arrows can be found at
-- <http://www.haskell.org/arrows/>.

module Control.Arrow (
		-- * Arrows
		Arrow(..), Kleisli(..),
		-- ** Derived combinators
		returnA,
		(^>>), (>>^),
		-- ** Right-to-left variants
		(<<<), (<<^), (^<<),
		-- * Monoid operations
		ArrowZero(..), ArrowPlus(..),
		-- * Conditionals
		ArrowChoice(..),
		-- * Arrow application
		ArrowApply(..), ArrowMonad(..), leftApp,
		-- * Feedback
		ArrowLoop(..)
	) where

import Prelude

import Control.Monad
import Control.Monad.Fix

infixr 5 <+>
infixr 3 ***
infixr 3 &&&
infixr 2 +++
infixr 2 |||
infixr 1 >>>, ^>>, >>^
infixr 1 <<<, ^<<, <<^

-- | The basic arrow class.
--   Any instance must define either 'arr' or 'pure' (which are synonyms),
--   as well as '>>>' and 'first'.  The other combinators have sensible
--   default definitions, which may be overridden for efficiency.

class Arrow a where

	-- | Lift a function to an arrow: you must define either this
	--   or 'pure'.
	arr :: (b -> c) -> a b c
	arr = pure

	-- | A synonym for 'arr': you must define one or other of them.
	pure :: (b -> c) -> a b c
	pure = arr

	-- | Left-to-right composition of arrows.
	(>>>) :: a b c -> a c d -> a b d

	-- | Send the first component of the input through the argument
	--   arrow, and copy the rest unchanged to the output.
	first :: a b c -> a (b,d) (c,d)

	-- | A mirror image of 'first'.
	--
	--   The default definition may be overridden with a more efficient
	--   version if desired.
	second :: a b c -> a (d,b) (d,c)
	second f = arr swap >>> first f >>> arr swap
			where	swap ~(x,y) = (y,x)

	-- | Split the input between the two argument arrows and combine
	--   their output.  Note that this is in general not a functor.
	--
	--   The default definition may be overridden with a more efficient
	--   version if desired.
	(***) :: a b c -> a b' c' -> a (b,b') (c,c')
	f *** g = first f >>> second g

	-- | Fanout: send the input to both argument arrows and combine
	--   their output.
	--
	--   The default definition may be overridden with a more efficient
	--   version if desired.
	(&&&) :: a b c -> a b c' -> a b (c,c')
	f &&& g = arr (\b -> (b,b)) >>> f *** g

{-# RULES
"compose/arr"	forall f g .
		arr f >>> arr g = arr (f >>> g)
"first/arr"	forall f .
		first (arr f) = arr (first f)
"second/arr"	forall f .
		second (arr f) = arr (second f)
"product/arr"	forall f g .
		arr f *** arr g = arr (f *** g)
"fanout/arr"	forall f g .
		arr f &&& arr g = arr (f &&& g)
"compose/first"	forall f g .
		first f >>> first g = first (f >>> g)
"compose/second" forall f g .
		second f >>> second g = second (f >>> g)
 #-}

-- Ordinary functions are arrows.

instance Arrow (->) where
	arr f = f
	f >>> g = g . f
	first f = f *** id
	second f = id *** f
--	(f *** g) ~(x,y) = (f x, g y)
--	sorry, although the above defn is fully H'98, nhc98 can't parse it.
	(***) f g ~(x,y) = (f x, g y)

-- | Kleisli arrows of a monad.

newtype Kleisli m a b = Kleisli { runKleisli :: a -> m b }

instance Monad m => Arrow (Kleisli m) where
	arr f = Kleisli (return . f)
	Kleisli f >>> Kleisli g = Kleisli (\b -> f b >>= g)
	first (Kleisli f) = Kleisli (\ ~(b,d) -> f b >>= \c -> return (c,d))
	second (Kleisli f) = Kleisli (\ ~(d,b) -> f b >>= \c -> return (d,c))

-- | The identity arrow, which plays the role of 'return' in arrow notation.

returnA :: Arrow a => a b b
returnA = arr id

-- | Precomposition with a pure function.
(^>>) :: Arrow a => (b -> c) -> a c d -> a b d
f ^>> a = arr f >>> a

-- | Postcomposition with a pure function.
(>>^) :: Arrow a => a b c -> (c -> d) -> a b d
a >>^ f = a >>> arr f

-- | Right-to-left composition, for a better fit with arrow notation.
(<<<) :: Arrow a => a c d -> a b c -> a b d
f <<< g = g >>> f

-- | Precomposition with a pure function (right-to-left variant).
(<<^) :: Arrow a => a c d -> (b -> c) -> a b d
a <<^ f = a <<< arr f

-- | Postcomposition with a pure function (right-to-left variant).
(^<<) :: Arrow a => (c -> d) -> a b c -> a b d
f ^<< a = arr f <<< a

class Arrow a => ArrowZero a where
	zeroArrow :: a b c

instance MonadPlus m => ArrowZero (Kleisli m) where
	zeroArrow = Kleisli (\x -> mzero)

class ArrowZero a => ArrowPlus a where
	(<+>) :: a b c -> a b c -> a b c

instance MonadPlus m => ArrowPlus (Kleisli m) where
	Kleisli f <+> Kleisli g = Kleisli (\x -> f x `mplus` g x)

-- | Choice, for arrows that support it.  This class underlies the
--   @if@ and @case@ constructs in arrow notation.
--   Any instance must define 'left'.  The other combinators have sensible
--   default definitions, which may be overridden for efficiency.

class Arrow a => ArrowChoice a where

	-- | Feed marked inputs through the argument arrow, passing the
	--   rest through unchanged to the output.
	left :: a b c -> a (Either b d) (Either c d)

	-- | A mirror image of 'left'.
	--
	--   The default definition may be overridden with a more efficient
	--   version if desired.
	right :: a b c -> a (Either d b) (Either d c)
	right f = arr mirror >>> left f >>> arr mirror
			where	mirror (Left x) = Right x
				mirror (Right y) = Left y

	-- | Split the input between the two argument arrows, retagging
	--   and merging their outputs.
	--   Note that this is in general not a functor.
	--
	--   The default definition may be overridden with a more efficient
	--   version if desired.
	(+++) :: a b c -> a b' c' -> a (Either b b') (Either c c')
	f +++ g = left f >>> right g

	-- | Fanin: Split the input between the two argument arrows and
	--   merge their outputs.
	--
	--   The default definition may be overridden with a more efficient
	--   version if desired.
	(|||) :: a b d -> a c d -> a (Either b c) d
	f ||| g = f +++ g >>> arr untag
			where	untag (Left x) = x
				untag (Right y) = y

{-# RULES
"left/arr"	forall f .
		left (arr f) = arr (left f)
"right/arr"	forall f .
		right (arr f) = arr (right f)
"sum/arr"	forall f g .
		arr f +++ arr g = arr (f +++ g)
"fanin/arr"	forall f g .
		arr f ||| arr g = arr (f ||| g)
"compose/left"	forall f g .
		left f >>> left g = left (f >>> g)
"compose/right"	forall f g .
		right f >>> right g = right (f >>> g)
 #-}

instance ArrowChoice (->) where
	left f = f +++ id
	right f = id +++ f
	f +++ g = (Left . f) ||| (Right . g)
	(|||) = either

instance Monad m => ArrowChoice (Kleisli m) where
	left f = f +++ arr id
	right f = arr id +++ f
	f +++ g = (f >>> arr Left) ||| (g >>> arr Right)
	Kleisli f ||| Kleisli g = Kleisli (either f g)

-- | Some arrows allow application of arrow inputs to other inputs.

class Arrow a => ArrowApply a where
	app :: a (a b c, b) c

instance ArrowApply (->) where
	app (f,x) = f x

instance Monad m => ArrowApply (Kleisli m) where
	app = Kleisli (\(Kleisli f, x) -> f x)

-- | The 'ArrowApply' class is equivalent to 'Monad': any monad gives rise
--   to a 'Kleisli' arrow, and any instance of 'ArrowApply' defines a monad.

newtype ArrowApply a => ArrowMonad a b = ArrowMonad (a () b)

instance ArrowApply a => Monad (ArrowMonad a) where
	return x = ArrowMonad (arr (\z -> x))
	ArrowMonad m >>= f = ArrowMonad (m >>>
			arr (\x -> let ArrowMonad h = f x in (h, ())) >>>
			app)

-- | Any instance of 'ArrowApply' can be made into an instance of
--   'ArrowChoice' by defining 'left' = 'leftApp'.

leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d)
leftApp f = arr ((\b -> (arr (\() -> b) >>> f >>> arr Left, ())) |||
		 (\d -> (arr (\() -> d) >>> arr Right, ()))) >>> app

-- | The 'loop' operator expresses computations in which an output value is
--   fed back as input, even though the computation occurs only once.
--   It underlies the @rec@ value recursion construct in arrow notation.

class Arrow a => ArrowLoop a where
	loop :: a (b,d) (c,d) -> a b c

instance ArrowLoop (->) where
	loop f b = let (c,d) = f (b,d) in c

instance MonadFix m => ArrowLoop (Kleisli m) where
	loop (Kleisli f) = Kleisli (liftM fst . mfix . f')
		where	f' x y = f (x, snd y)