This file is indexed.

/usr/include/hmat/full_matrix.hpp is in libhmat-oss-dev 1.0.4-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*
  HMat-OSS (HMatrix library, open source software)

  Copyright (C) 2014-2015 Airbus Group SAS

  This program is free software; you can redistribute it and/or
  modify it under the terms of the GNU General Public License
  as published by the Free Software Foundation; either version 2
  of the License, or (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

  http://github.com/jeromerobert/hmat-oss
*/

/*! \file
  \ingroup HMatrix
  \brief Dense Matrix type used by the HMatrix library.
*/
#ifndef _FULL_MATRIX_HPP
#define _FULL_MATRIX_HPP
#include <cstddef>

#include "data_types.hpp"
#include "h_matrix.hpp"

/*! \brief Templated dense Matrix type.

  The template parameter represents the scalar type of the matrix elements.  The
  supported types are \a S_t, \a D_t, \a C_t and \a Z_t, as defined in
  @data_types.hpp.
 */
template<typename T> class FullMatrix {
private:
  /*! True if the matrix owns its memory, ie has to free it upon destruction */
  bool ownsMemory;

public:
  /// Fortran style pointer (columnwise)
  T* m;
  /// Number of rows
  int rows;
  /// Number of columns
  int cols;
  /*! Leading dimension, as in BLAS */
  int lda;
  /*! Holds the pivots for the LU decomposition. */
  int* pivots;
  /*! Diagonal in an LDL^t factored matrix */
  Vector<T>* diagonal;
  /*! Is this matrix upper triangular? */
  bool isTriUpper;
  /*! Is this matrix lower triangular? */
  bool isTriLower;

public:
  /** \brief Initialize the matrix with existing data.

      In this case the matrix doesn't own the data (the memory is not
      freed at the object destruction).

      \param _m Pointer to the data
      \param _rows Number of rows
      \param _cols Number of cols
      \param lda Leading dimension, as in BLAS
   */
  FullMatrix(T* _m, size_t _rows, size_t _cols, int _lda=-1);
  /* \brief Create an empty matrix, filled with 0s.

     In this case, the memory is freed when the object is destroyed.

     \param _rows Number of rows
     \param _cols Number of columns
   */
  FullMatrix(size_t _rows, size_t _cols);
  /** \brief Create a matrix filled with 0s.

     In this case, the memory is freed when the object is destroyed.

     \param _rows Number of rows
     \param _cols Number of columns
   */
  static FullMatrix* Zero(size_t rows, size_t cols);
  ~FullMatrix();
  /** This <- 0.
   */
  void clear();
  /** \brief this *= alpha.

      \param alpha The scaling factor.
   */
  void scale(T alpha);
  /** \brief Transpose in place.
   */
  void transpose();
  /** Return a copy of this.
   */
  FullMatrix<T>* copy() const;
  /** \brief Return a new matrix that is a transposed version of this.
   */
  FullMatrix<T>* copyAndTranspose() const;
  /** this = alpha * op(A) * op(B) + beta * this

      Standard "GEMM" call, as in BLAS.

      \param transA 'N' or 'T', as in BLAS
      \param transB 'N' or 'T', as in BLAS
      \param alpha alpha
      \param a the matrix A
      \param b the matrix B
      \param beta beta
   */
  void gemm(char transA, char transB, T alpha, const FullMatrix<T>* a,
            const FullMatrix<T>* b, T beta);
  /*! \brief B <- B*D or B <- B*D^-1  (or with D on the left).

    B = this, and D a diagonal matrix.

     \param d  D
     \param inverse true : B<-B*D^-1, false B<-B*D
     \param left true : B<-D*B, false B<-B*D
  */
  void multiplyWithDiagOrDiagInv(const Vector<T>* d, bool inverse, bool left = false);
  /*! \brief Compute a LU factorization in place.
   */
  void luDecomposition();
  /*! \brief Compute a LDLt factorization in place.
   */
  void ldltDecomposition();
  /*! \brief Compute a LLt factorization in place (aka Cholesky).
   */
  void lltDecomposition();
  /*! \brief Solve the system L X = B, with B = X on entry, and L = this.

    This function requires the matrix to be factored by
    HMatrix::luDecomposition() beforehand.

    \param x B on entry, the solution on exit.
   */
  void solveLowerTriangular(FullMatrix<T>* x) const;
  /*! \brief Solve the system X U = B, with B = X on entry, and U = this.

    This function requires the matrix to be factored by
    HMatrix::luDecomposition() beforehand.

    \param x B on entry, the solution on exit.
   */
  void solveUpperTriangular(FullMatrix<T>* x, bool loweredStored = false) const;
  /*! \brief Solve the system U X = B, with B = X on entry, and U = this.

    This function requires the matrix to be factored by
    HMatrix::luDecomposition() beforehand.

    \param x B on entry, the solution on exit.
   */
  void solveUpperTriangularLeft(FullMatrix<T>* x, bool lowerStored) const;
  /*! \brief Solve the system U X = B, with B = X on entry, and U = this.

    This function requires the matrix to be factored by
    HMatrix::luDecomposition() beforehand.

    \param x B on entry, the solution on exit.
   */
  void solve(FullMatrix<T>* x) const;
  /*! \brief Compute the inverse of this in place.
   */
  void inverse();
  /*! Copy a matrix A into 'this' at offset (rowOffset, colOffset) (indices start at 0).

    \param a the matrix A
    \param rowOffset the row offset
    \param colOffset the column offset
   */
  void copyMatrixAtOffset(const FullMatrix<T>* a, int rowOffset, int colOffset);
  /*! Copy a matrix A into 'this' at offset (rowOffset, colOffset) (indices start at 0).

    In this function, only copy a sub-matrix of size (rowsToCopy, colsToCopy).

    \param a the matrix A
    \param rowOffset the row offset
    \param colOffset the column offset
    \param rowsToCopy number of rows to copy
    \param colsToCopy number of columns to copy
   */
  void copyMatrixAtOffset(const FullMatrix<T>* a, int rowOffset, int colOffset,
                          int rowsToCopy, int colsToCopy);
  /*! \brief this += alpha * A

    \param a the Matrix A
   */
  void axpy(T alpha, const FullMatrix<T>* a);
  /*! \brief Return the Frobenius norm of the matrix.

    \return the matrix norm.
   */
  double norm() const;
  /*! \brief Write the matrix to a binary file.

    \param filename output filename
   */
  void toFile(const char *filename) const;
  /** Simpler accessors for the data.

      There are 2 types to allow matrix modification or not.
   */
  T& get(size_t i, size_t j) {
    return m[i + lda * j];
  }
  T get(size_t i, size_t j) const {
    return  m[i + lda * j];
  }
  /** Simpler accessors for the diagonal.

      \warning This will only work if the matrix has been factored
      with \a FullMatrix::ldltDecomposition() beforehand.
   */
  T getD(size_t i) const {
    return diagonal->v[i];
  }
  T& getD(size_t i) {
    return diagonal->v[i];
  }
  /*! Check the matrix for the presence of NaN numbers.

    If a NaN is found, an assertion is triggered.
   */
  void checkNan() const;

private:
  /// Disallow the copy
  FullMatrix(const FullMatrix<T>& o);
};


/** \brief Wraps a FullMatrix backed by a file (using mmap()).
 */
template<typename T> class MmapedFullMatrix {
public:
  FullMatrix<T> m;
private:
  void* mmapedFile;
  int fd;
  size_t size;

public:
  /** \brief Maps a .res file into memory.

      The mapping is read-only.

      \param filename The filename
      \return an instance of MMapedFullMatrix<T> mapping the file.
   */
  static MmapedFullMatrix<T>* fromFile(const char* filename);
  /** \brief Creates a FullMatrix backed by a file, wrapped into a MMapedFullMatrix<T>.

      \param rows number of rows of the matrix.
      \param cols number of columns of the matrix.
      \param filename Filename. The file is not destroyed with the object.
   */
  MmapedFullMatrix(size_t rows, size_t cols, const char* filename);
  ~MmapedFullMatrix();

private:
  MmapedFullMatrix() : m(NULL, 0, 0), mmapedFile(NULL), fd(-1), size(0) {};
};


/*! \brief Templated Vector class.

  As for \a FullMatrix, the template parameter is the scalar type.
 */
template<typename T> class Vector {
private:
  /// True if the vector owns its memory
  bool ownsMemory;

public:
  /// Pointer to the data
  T* v;
  /// Rows count
  size_t rows;

public:
  Vector(T* _v, size_t _rows);
  Vector(size_t _rows);
  ~Vector();
  /** Create a vector filled with 0s.
   */
  static Vector<T>* Zero(size_t rows);
  /**  this = alpha * A * x + beta * this

       Wrapper around the 'GEMV' BLAS call.

       \param trans 'N' or 'T', as in BLAS
       \param alpha alpha
       \param a A
       \param x X
       \param beta beta
   */
  void gemv(char trans, T alpha, const FullMatrix<T>* a, const Vector<T>* x,
            T beta);
  /** \brief this += v
   */
  void addToMe(const Vector<T>* x);
  /** \brief this -= v
   */
  void subToMe(const Vector<T>* x);
  /** L2 norm of the vector.
   */
  double norm() const;
  /** Set the vector to 0.
   */
  void clear();
  /** This *= alpha.
   */
  void scale(T alpha);
  /** Compute This += alpha X, X a vector.
   */
  void axpy(T alpha, const Vector<T>* x);
  /** \brief Return the index of the maximum absolute value element.

      This function is similar to iXamax() in BLAS.

      \return the index of the maximum absolute value element in the vector.
   */
  int absoluteMaxIndex() const;
  /** Compute the dot product of two \Vector.

      For real-valued vectors, this is the usual dot product. For
      complex-valued ones, this is defined as:
         <x, y> = \bar{x}^t \times y
      as in BLAS

      \warning DOES NOT work with vectors with >INT_MAX elements

      \param x
      \param y
      \return <x, y>
   */
  static T dot(const Vector<T>* x, const Vector<T>* y);

private:
  /// Disallow the copy
  Vector<T>(const Vector<T>& o);
};

/*! \brief Wrapper around BLAS copy function.

  \param n Number of elements to copy
  \param from Source
  \param incFrom increment between elements in from
  \param to Destination
  \paarm incTo increment between elenents in to
 */
template<typename T> void blasCopy(int n, T* from, int incFrom, T* to, int incTo);
#endif