This file is indexed.

/usr/include/HepMC/HEPEVT_Wrapper.h is in libhepmcfio-dev 2.06.09-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
//--------------------------------------------------------------------------

#ifndef HEPEVT_EntriesAllocation
#define HEPEVT_EntriesAllocation 10000
#endif  // HEPEVT_EntriesAllocation

//--------------------------------------------------------------------------
#ifndef HEPMC_HEPEVT_COMMON_H
#define HEPMC_HEPEVT_COMMON_H
//////////////////////////////////////////////////////////////////////////
//
//      PARAMETER (NMXHEP=2000) 
//      COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP), 
//     &        JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)
/**********************************************************/
/*           D E S C R I P T I O N :                      */
/*--------------------------------------------------------*/
/* NEVHEP          - event number (or some special meaning*/
/*                    (see documentation for details)     */
/* NHEP            - actual number of entries in current  */
/*                    event.                              */
/* ISTHEP[IHEP]    - status code for IHEP'th entry - see  */
/*                    documentation for details           */
/* IDHEP [IHEP]    - IHEP'th particle identifier according*/
/*                    to PDG.                             */
/* JMOHEP[IHEP][0] - pointer to position of 1st mother    */
/* JMOHEP[IHEP][1] - pointer to position of 2nd mother    */
/* JDAHEP[IHEP][0] - pointer to position of 1st daughter  */
/* JDAHEP[IHEP][1] - pointer to position of 2nd daughter  */
/* PHEP  [IHEP][0] - X momentum                           */
/* PHEP  [IHEP][1] - Y momentum                           */
/* PHEP  [IHEP][2] - Z momentum                           */
/* PHEP  [IHEP][3] - Energy                               */
/* PHEP  [IHEP][4] - Mass                                 */
/* VHEP  [IHEP][0] - X vertex                             */
/* VHEP  [IHEP][1] - Y vertex                             */
/* VHEP  [IHEP][2] - Z vertex                             */
/* VHEP  [IHEP][3] - production time                      */
/*========================================================*/
// Remember, array(1) is the first entry in a fortran array, array[0] is the
//           first entry in a C array.
//
// This interface to HEPEVT common block treats the block as
// an array of bytes --- the precision and number of entries 
// is determined "on the fly" by the wrapper and used to decode
// each entry.
//
// HEPEVT_EntriesAllocation is the maximum size of the HEPEVT common block 
//   that can be interfaced.
//   It is NOT the actual size of the HEPEVT common used in each
//   individual application. The actual size can be changed on
//   the fly using HEPEVT_Wrapper::set_max_number_entries().
// Thus HEPEVT_EntriesAllocation should typically be set
// to the maximum possible number of entries --- 10000 is a good choice
// (and is the number used by ATLAS versions of Pythia).
//
// Note: a statement like    *( (int*)&hepevt.data[0] )
//      takes the memory address of the first byte in HEPEVT,
//      interprets it as an integer pointer, 
//      and dereferences the pointer.
//      i.e. it returns an integer corresponding to nevhep
//

#include <ctype.h>

    const unsigned int hepevt_bytes_allocation = 
                sizeof(long int) * ( 2 + 6 * HEPEVT_EntriesAllocation )
                + sizeof(double) * ( 9 * HEPEVT_EntriesAllocation );


#ifdef _WIN32 // Platform: Windows MS Visual C++
struct HEPEVT_DEF{
        char data[hepevt_bytes_allocation];
    };
extern "C" HEPEVT_DEF HEPEVT;
#define hepevt HEPEVT

#else
extern "C" {
    extern struct {
	char data[hepevt_bytes_allocation];
    } hepevt_;
}
#define hepevt hepevt_

#endif // Platform

#endif  // HEPMC_HEPEVT_COMMON_H

//--------------------------------------------------------------------------
#ifndef HEPMC_HEPEVT_WRAPPER_H
#define HEPMC_HEPEVT_WRAPPER_H

//////////////////////////////////////////////////////////////////////////
// Matt.Dobbs@Cern.CH, April 24, 2000, refer to:
// M. Dobbs and J.B. Hansen, "The HepMC C++ Monte Carlo Event Record for
// High Energy Physics", Computer Physics Communications (to be published).
//
// Generic Wrapper for the fortran HEPEVT common block
// This class is intended for static use only - it makes no sense to 
// instantiate it.
// Updated: June 30, 2000 (static initialization moved to separate .cxx file)
//////////////////////////////////////////////////////////////////////////
//
// The index refers to the fortran style index: 
// i.e. index=1 refers to the first entry in the HEPEVT common block.
// all indices must be >0
// number_entries --> integer between 0 and max_number_entries() giving total
//                    number of sequential particle indices
// first_parent/child --> index of first mother/child if there is one, 
//                        zero otherwise
// last_parent/child --> if number children is >1, address of last parent/child
//                       if number of children is 1, same as first_parent/child
//                       if there are no children, returns zero.
// is_double_precision --> T or F depending if floating point variables 
//                         are 8 or 4 bytes
//

#include <iostream>
#include <cstdio>       // needed for formatted output using sprintf 

namespace HepMC {

    //! Generic Wrapper for the fortran HEPEVT common block
    
    /// \class HEPEVT_Wrapper
    /// This class is intended for static use only - it makes no sense to 
    /// instantiate it.
    ///
    class HEPEVT_Wrapper {
    public:

        /// write information from HEPEVT common block
	static void print_hepevt( std::ostream& ostr = std::cout );
	/// write particle information to ostr
	static void print_hepevt_particle( int index, 
					   std::ostream& ostr = std::cout );
        static bool is_double_precision();  //!< True if common block uses double

        /// check for problems with HEPEVT common block
	static bool check_hepevt_consistency( std::ostream& ostr = std::cout );

        /// set all entries in HEPEVT to zero
	static void zero_everything();

	////////////////////
	// Access Methods //
	////////////////////
        static int    event_number();             //!< event number
        static int    number_entries();           //!< num entries in current evt
        static int    status( int index );        //!< status code
        static int    id( int index );            //!< PDG particle id
        static int    first_parent( int index );  //!< index of 1st mother
        static int    last_parent( int index );   //!< index of last mother
	static int    number_parents( int index ); //!< number of parents 
        static int    first_child( int index );   //!< index of 1st daughter
        static int    last_child( int index );    //!< index of last daughter
	static int    number_children( int index ); //!< number of children
        static double px( int index );            //!< X momentum       
        static double py( int index );            //!< Y momentum   
        static double pz( int index );            //!< Z momentum   
        static double e( int index );             //!< Energy
        static double m( int index );             //!< generated mass
        static double x( int index );             //!< X Production vertex
        static double y( int index );             //!< Y Production vertex
        static double z( int index );             //!< Z Production vertex
        static double t( int index );             //!< production time

	////////////////////
	// Set Methods    //
	////////////////////

	/// set event number
        static void set_event_number( int evtno );
	/// set number of entries in HEPEVT
        static void set_number_entries( int noentries );
	/// set particle status
        static void set_status( int index, int status );
	/// set particle ID
        static void set_id( int index, int id );
	/// define parents of a particle
        static void set_parents( int index, int firstparent, int lastparent );
	/// define children of a particle
        static void set_children( int index, int firstchild, int lastchild );
	/// set particle momentum
        static void set_momentum( int index, double px, double py,
				  double pz, double e );
	/// set particle mass
        static void set_mass( int index, double mass );
	/// set particle production vertex
        static void set_position( int index, double x, double y, double z, 
				  double t );
	//////////////////////
	// HEPEVT Floorplan //
	//////////////////////
	static unsigned int sizeof_int();  //!< size of integer in bytes
	static unsigned int sizeof_real(); //!< size of real in bytes
        static int  max_number_entries();  //!< size of common block
	static void set_sizeof_int(unsigned int);  //!< define size of integer
	static void set_sizeof_real(unsigned int); //!< define size of real
	static void set_max_number_entries(unsigned int); //!< define size of common block

    protected:
        /// navigate a byte array
	static double byte_num_to_double( unsigned int );
        /// navigate a byte array
	static int    byte_num_to_int( unsigned int );
        /// pretend common block is an array of bytes
	static void   write_byte_num( double, unsigned int );
        /// pretend common block is an array of bytes
	static void   write_byte_num( int, unsigned int );
	/// print output legend
	static void   print_legend( std::ostream& ostr = std::cout );

    private:
	static unsigned int s_sizeof_int;
	static unsigned int s_sizeof_real;
	static unsigned int s_max_number_entries;

    }; 

    //////////////////////////////
    // HEPEVT Floorplan Inlines //
    //////////////////////////////
    inline unsigned int HEPEVT_Wrapper::sizeof_int(){ return s_sizeof_int; }

    inline unsigned int HEPEVT_Wrapper::sizeof_real(){ return s_sizeof_real; }

    inline int HEPEVT_Wrapper::max_number_entries() 
    { return (int)s_max_number_entries; }

    inline void HEPEVT_Wrapper::set_sizeof_int( unsigned int size ) 
    {
	if ( size != sizeof(short int) && size != sizeof(long int) && size != sizeof(int) ) {
	    std::cerr << "HepMC is not able to handle integers "
		      << " of size other than 2 or 4."
		      << " You requested: " << size << std::endl;
	}
	s_sizeof_int = size;
    }

    inline void HEPEVT_Wrapper::set_sizeof_real( unsigned int size ) {
	if ( size != sizeof(float) && size != sizeof(double) ) {
	    std::cerr << "HepMC is not able to handle floating point numbers"
		      << " of size other than 4 or 8."
		      << " You requested: " << size << std::endl;
	}
	s_sizeof_real = size;
    }

    inline void HEPEVT_Wrapper::set_max_number_entries( unsigned int size ) {
	s_max_number_entries = size;
    }

    inline double HEPEVT_Wrapper::byte_num_to_double( unsigned int b ) {
	if ( b >= hepevt_bytes_allocation ) std::cerr 
		  << "HEPEVT_Wrapper: requested hepevt data exceeds allocation"
		  << std::endl;
	if ( s_sizeof_real == sizeof(float) ) {
	    float* myfloat = (float*)&hepevt.data[b];
	    return (double)(*myfloat);
	} else if ( s_sizeof_real == sizeof(double) ) {
	    double* mydouble = (double*)&hepevt.data[b];
	    return (*mydouble);
	} else {
	    std::cerr 
		<< "HEPEVT_Wrapper: illegal floating point number length." 
		<< s_sizeof_real << std::endl;
	}
	return 0;
    }

    inline int HEPEVT_Wrapper::byte_num_to_int( unsigned int b ) {
	if ( b >= hepevt_bytes_allocation ) std::cerr 
		  << "HEPEVT_Wrapper: requested hepevt data exceeds allocation"
		  << std::endl;
	if ( s_sizeof_int == sizeof(short int) ) {
	    short int* myshortint = (short int*)&hepevt.data[b];
	    return (int)(*myshortint);
	} else if ( s_sizeof_int == sizeof(long int) ) {
	    long int* mylongint = (long int*)&hepevt.data[b];
	    return (*mylongint);
       // on some 64 bit machines, int, short, and long are all different
	} else if ( s_sizeof_int == sizeof(int) ) {
	    int* myint = (int*)&hepevt.data[b];
	    return (*myint);
	} else {
	    std::cerr 
		<< "HEPEVT_Wrapper: illegal integer number length." 
		<< s_sizeof_int << std::endl;
	}
	return 0;
    }

    inline void HEPEVT_Wrapper::write_byte_num( double in, unsigned int b ) {
	if ( b >= hepevt_bytes_allocation ) std::cerr 
		  << "HEPEVT_Wrapper: requested hepevt data exceeds allocation"
		  << std::endl;
	if ( s_sizeof_real == sizeof(float) ) {
	    float* myfloat = (float*)&hepevt.data[b];
	    (*myfloat) = (float)in;
	} else if ( s_sizeof_real == sizeof(double) ) {
	    double* mydouble = (double*)&hepevt.data[b];
	    (*mydouble) = (double)in;
	} else {
	    std::cerr 
		<< "HEPEVT_Wrapper: illegal floating point number length." 
		<< s_sizeof_real << std::endl;
	}
    }

    inline void HEPEVT_Wrapper::write_byte_num( int in, unsigned int b ) {
	if ( b >= hepevt_bytes_allocation ) std::cerr 
		  << "HEPEVT_Wrapper: requested hepevt data exceeds allocation"
		  << std::endl;
	if ( s_sizeof_int == sizeof(short int) ) {
	    short int* myshortint = (short int*)&hepevt.data[b];
	    (*myshortint) = (short int)in;
	} else if ( s_sizeof_int == sizeof(long int) ) {
	    long int* mylongint = (long int*)&hepevt.data[b];
	    (*mylongint) = (int)in;
       // on some 64 bit machines, int, short, and long are all different
	} else if ( s_sizeof_int == sizeof(int) ) {
	    int* myint = (int*)&hepevt.data[b];
	    (*myint) = (int)in;
	} else {
	    std::cerr 
		<< "HEPEVT_Wrapper: illegal integer number length." 
		<< s_sizeof_int << std::endl;
	}
    }

    //////////////
    // INLINES  //
    //////////////

    inline bool HEPEVT_Wrapper::is_double_precision() 
    { 
	// true if 8byte floating point numbers are used in the HepEVT common.
	return ( sizeof(double) == sizeof_real() );
    }

    inline int HEPEVT_Wrapper::event_number()
    { return byte_num_to_int(0); }

    inline int HEPEVT_Wrapper::number_entries() 
    { 
	int nhep = byte_num_to_int( 1*sizeof_int() );
	return ( nhep <= max_number_entries() ?
		 nhep : max_number_entries() );
    }

    inline int HEPEVT_Wrapper::status( int index )   
    { return byte_num_to_int( (2+index-1) * sizeof_int() ); }

    inline int HEPEVT_Wrapper::id( int index )
    { 
	return byte_num_to_int( (2+max_number_entries()+index-1) 
				* sizeof_int() ); 
    }

    inline int HEPEVT_Wrapper::first_parent( int index )
    { 
	int parent = byte_num_to_int( (2+2*max_number_entries()+2*(index-1)) 
				      * sizeof_int() ); 
	return ( parent > 0 && parent <= number_entries() ) ?
					 parent : 0; 
    }

    inline int HEPEVT_Wrapper::last_parent( int index )
    { 
	// Returns the Index of the LAST parent in the HEPEVT record
	// for particle with Index index.
	// If there is only one parent, the last parent is forced to 
	// be the same as the first parent.
	// If there are no parents for this particle, both the first_parent
	// and the last_parent with return 0.
	// Error checking is done to ensure the parent is always
	// within range ( 0 <= parent <= nhep )
	//
	int firstparent = first_parent(index);
	int parent = byte_num_to_int( (2+2*max_number_entries()+2*(index-1)+1) 
				      * sizeof_int() ); 
	return ( parent > firstparent && parent <= number_entries() ) 
						   ? parent : firstparent; 
    }

    inline int HEPEVT_Wrapper::number_parents( int index ) {
	int firstparent = first_parent(index);
	return ( firstparent>0 ) ? 
	    ( 1+last_parent(index)-firstparent ) : 0;
    }

    inline int HEPEVT_Wrapper::first_child( int index )
    { 
	int child = byte_num_to_int( (2+4*max_number_entries()+2*(index-1)) 
				     * sizeof_int() ); 
	return ( child > 0 && child <= number_entries() ) ?
				       child : 0; 
    }

    inline int HEPEVT_Wrapper::last_child( int index )
    { 
	// Returns the Index of the LAST child in the HEPEVT record
	// for particle with Index index.
	// If there is only one child, the last child is forced to 
	// be the same as the first child.
	// If there are no children for this particle, both the first_child
	// and the last_child with return 0.
	// Error checking is done to ensure the child is always
	// within range ( 0 <= parent <= nhep )
	//
	int firstchild = first_child(index);
	int child = byte_num_to_int( (2+4*max_number_entries()+2*(index-1)+1) 
				     * sizeof_int() ); 
	return ( child > firstchild && child <= number_entries() ) 
						? child : firstchild;
    }

    inline int HEPEVT_Wrapper::number_children( int index ) 
    {
	int firstchild = first_child(index);
	return ( firstchild>0 ) ? 
	    ( 1+last_child(index)-firstchild ) : 0;
    }

    inline double HEPEVT_Wrapper::px( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				 + (5*(index-1)+0) *sizeof_real() );
    }

    inline double HEPEVT_Wrapper::py( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				 + (5*(index-1)+1) *sizeof_real() );
    }


    inline double HEPEVT_Wrapper::pz( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				 + (5*(index-1)+2) *sizeof_real() );
    }

    inline double HEPEVT_Wrapper::e( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				 + (5*(index-1)+3) *sizeof_real() );
    }

    inline double HEPEVT_Wrapper::m( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				 + (5*(index-1)+4) *sizeof_real() );
    }

    inline double HEPEVT_Wrapper::x( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				   + ( 5*max_number_entries()
				       + (4*(index-1)+0) ) *sizeof_real() );
    }

    inline double HEPEVT_Wrapper::y( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				   + ( 5*max_number_entries()
				       + (4*(index-1)+1) ) *sizeof_real() );
    }

    inline double HEPEVT_Wrapper::z( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				   + ( 5*max_number_entries()
				       + (4*(index-1)+2) ) *sizeof_real() );
    }

    inline double HEPEVT_Wrapper::t( int index )
    { 
	return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
				   + ( 5*max_number_entries()
				       + (4*(index-1)+3) ) *sizeof_real() );
    }

    inline void HEPEVT_Wrapper::set_event_number( int evtno ) 
    { write_byte_num( evtno, 0 ); }

    inline void HEPEVT_Wrapper::set_number_entries( int noentries ) 
    { write_byte_num( noentries, 1*sizeof_int() ); }

    inline void HEPEVT_Wrapper::set_status( int index, int status ) 
    {
        if ( index <= 0 || index > max_number_entries() ) return;
	write_byte_num( status, (2+index-1) * sizeof_int() );
    }

    inline void HEPEVT_Wrapper::set_id( int index, int id ) 
    {
        if ( index <= 0 || index > max_number_entries() ) return;
	write_byte_num( id, (2+max_number_entries()+index-1) *sizeof_int() );
    }

    inline void HEPEVT_Wrapper::set_parents( int index, int firstparent, 
					     int lastparent ) 
    {
        if ( index <= 0 || index > max_number_entries() ) return;
	write_byte_num( firstparent, (2+2*max_number_entries()+2*(index-1)) 
			             *sizeof_int() );
	write_byte_num( lastparent, (2+2*max_number_entries()+2*(index-1)+1) 
				    * sizeof_int() );
    }
    
    inline void HEPEVT_Wrapper::set_children( int index, int firstchild, 
					      int lastchild ) 
    {
        if ( index <= 0 || index > max_number_entries() ) return;
	write_byte_num( firstchild, (2+4*max_number_entries()+2*(index-1)) 
				     *sizeof_int() );
	write_byte_num( lastchild, (2+4*max_number_entries()+2*(index-1)+1) 
				    *sizeof_int() );
    }

    inline void HEPEVT_Wrapper::set_momentum( int index, double px, 
					      double py, double pz, double e ) 
    {
        if ( index <= 0 || index > max_number_entries() ) return;
	write_byte_num( px, (2+6*max_number_entries()) *sizeof_int()
			    + (5*(index-1)+0) *sizeof_real() );
	write_byte_num( py, (2+6*max_number_entries())*sizeof_int()
			    + (5*(index-1)+1) *sizeof_real() );
	write_byte_num( pz, (2+6*max_number_entries())*sizeof_int()
			    + (5*(index-1)+2) *sizeof_real() );
	write_byte_num( e,  (2+6*max_number_entries())*sizeof_int()
			    + (5*(index-1)+3) *sizeof_real() );
    }

    inline void HEPEVT_Wrapper::set_mass( int index, double mass ) 
    {
        if ( index <= 0 || index > max_number_entries() ) return;
	write_byte_num( mass, (2+6*max_number_entries())*sizeof_int()
			      + (5*(index-1)+4) *sizeof_real() );
    }

    inline void HEPEVT_Wrapper::set_position( int index, double x, double y,
					      double z, double t ) 
    {
        if ( index <= 0 || index > max_number_entries() ) return;
	write_byte_num( x, (2+6*max_number_entries())*sizeof_int()
			   + ( 5*max_number_entries()
			       + (4*(index-1)+0) ) *sizeof_real() );
	write_byte_num( y, (2+6*max_number_entries())*sizeof_int()
			   + ( 5*max_number_entries()
			       + (4*(index-1)+1) ) *sizeof_real() );
	write_byte_num( z, (2+6*max_number_entries())*sizeof_int()
			   + ( 5*max_number_entries()
			       + (4*(index-1)+2) ) *sizeof_real() );
	write_byte_num( t, (2+6*max_number_entries())*sizeof_int()
			   + ( 5*max_number_entries()
			       + (4*(index-1)+3) ) *sizeof_real() );
    }

} // HepMC

#endif  // HEPMC_HEPEVT_WRAPPER_H
//--------------------------------------------------------------------------