/usr/include/HepMC/HEPEVT_Wrapper.h is in libhepmcfio-dev 2.06.09-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 | //--------------------------------------------------------------------------
#ifndef HEPEVT_EntriesAllocation
#define HEPEVT_EntriesAllocation 10000
#endif // HEPEVT_EntriesAllocation
//--------------------------------------------------------------------------
#ifndef HEPMC_HEPEVT_COMMON_H
#define HEPMC_HEPEVT_COMMON_H
//////////////////////////////////////////////////////////////////////////
//
// PARAMETER (NMXHEP=2000)
// COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),
// & JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),VHEP(4,NMXHEP)
/**********************************************************/
/* D E S C R I P T I O N : */
/*--------------------------------------------------------*/
/* NEVHEP - event number (or some special meaning*/
/* (see documentation for details) */
/* NHEP - actual number of entries in current */
/* event. */
/* ISTHEP[IHEP] - status code for IHEP'th entry - see */
/* documentation for details */
/* IDHEP [IHEP] - IHEP'th particle identifier according*/
/* to PDG. */
/* JMOHEP[IHEP][0] - pointer to position of 1st mother */
/* JMOHEP[IHEP][1] - pointer to position of 2nd mother */
/* JDAHEP[IHEP][0] - pointer to position of 1st daughter */
/* JDAHEP[IHEP][1] - pointer to position of 2nd daughter */
/* PHEP [IHEP][0] - X momentum */
/* PHEP [IHEP][1] - Y momentum */
/* PHEP [IHEP][2] - Z momentum */
/* PHEP [IHEP][3] - Energy */
/* PHEP [IHEP][4] - Mass */
/* VHEP [IHEP][0] - X vertex */
/* VHEP [IHEP][1] - Y vertex */
/* VHEP [IHEP][2] - Z vertex */
/* VHEP [IHEP][3] - production time */
/*========================================================*/
// Remember, array(1) is the first entry in a fortran array, array[0] is the
// first entry in a C array.
//
// This interface to HEPEVT common block treats the block as
// an array of bytes --- the precision and number of entries
// is determined "on the fly" by the wrapper and used to decode
// each entry.
//
// HEPEVT_EntriesAllocation is the maximum size of the HEPEVT common block
// that can be interfaced.
// It is NOT the actual size of the HEPEVT common used in each
// individual application. The actual size can be changed on
// the fly using HEPEVT_Wrapper::set_max_number_entries().
// Thus HEPEVT_EntriesAllocation should typically be set
// to the maximum possible number of entries --- 10000 is a good choice
// (and is the number used by ATLAS versions of Pythia).
//
// Note: a statement like *( (int*)&hepevt.data[0] )
// takes the memory address of the first byte in HEPEVT,
// interprets it as an integer pointer,
// and dereferences the pointer.
// i.e. it returns an integer corresponding to nevhep
//
#include <ctype.h>
const unsigned int hepevt_bytes_allocation =
sizeof(long int) * ( 2 + 6 * HEPEVT_EntriesAllocation )
+ sizeof(double) * ( 9 * HEPEVT_EntriesAllocation );
#ifdef _WIN32 // Platform: Windows MS Visual C++
struct HEPEVT_DEF{
char data[hepevt_bytes_allocation];
};
extern "C" HEPEVT_DEF HEPEVT;
#define hepevt HEPEVT
#else
extern "C" {
extern struct {
char data[hepevt_bytes_allocation];
} hepevt_;
}
#define hepevt hepevt_
#endif // Platform
#endif // HEPMC_HEPEVT_COMMON_H
//--------------------------------------------------------------------------
#ifndef HEPMC_HEPEVT_WRAPPER_H
#define HEPMC_HEPEVT_WRAPPER_H
//////////////////////////////////////////////////////////////////////////
// Matt.Dobbs@Cern.CH, April 24, 2000, refer to:
// M. Dobbs and J.B. Hansen, "The HepMC C++ Monte Carlo Event Record for
// High Energy Physics", Computer Physics Communications (to be published).
//
// Generic Wrapper for the fortran HEPEVT common block
// This class is intended for static use only - it makes no sense to
// instantiate it.
// Updated: June 30, 2000 (static initialization moved to separate .cxx file)
//////////////////////////////////////////////////////////////////////////
//
// The index refers to the fortran style index:
// i.e. index=1 refers to the first entry in the HEPEVT common block.
// all indices must be >0
// number_entries --> integer between 0 and max_number_entries() giving total
// number of sequential particle indices
// first_parent/child --> index of first mother/child if there is one,
// zero otherwise
// last_parent/child --> if number children is >1, address of last parent/child
// if number of children is 1, same as first_parent/child
// if there are no children, returns zero.
// is_double_precision --> T or F depending if floating point variables
// are 8 or 4 bytes
//
#include <iostream>
#include <cstdio> // needed for formatted output using sprintf
namespace HepMC {
//! Generic Wrapper for the fortran HEPEVT common block
/// \class HEPEVT_Wrapper
/// This class is intended for static use only - it makes no sense to
/// instantiate it.
///
class HEPEVT_Wrapper {
public:
/// write information from HEPEVT common block
static void print_hepevt( std::ostream& ostr = std::cout );
/// write particle information to ostr
static void print_hepevt_particle( int index,
std::ostream& ostr = std::cout );
static bool is_double_precision(); //!< True if common block uses double
/// check for problems with HEPEVT common block
static bool check_hepevt_consistency( std::ostream& ostr = std::cout );
/// set all entries in HEPEVT to zero
static void zero_everything();
////////////////////
// Access Methods //
////////////////////
static int event_number(); //!< event number
static int number_entries(); //!< num entries in current evt
static int status( int index ); //!< status code
static int id( int index ); //!< PDG particle id
static int first_parent( int index ); //!< index of 1st mother
static int last_parent( int index ); //!< index of last mother
static int number_parents( int index ); //!< number of parents
static int first_child( int index ); //!< index of 1st daughter
static int last_child( int index ); //!< index of last daughter
static int number_children( int index ); //!< number of children
static double px( int index ); //!< X momentum
static double py( int index ); //!< Y momentum
static double pz( int index ); //!< Z momentum
static double e( int index ); //!< Energy
static double m( int index ); //!< generated mass
static double x( int index ); //!< X Production vertex
static double y( int index ); //!< Y Production vertex
static double z( int index ); //!< Z Production vertex
static double t( int index ); //!< production time
////////////////////
// Set Methods //
////////////////////
/// set event number
static void set_event_number( int evtno );
/// set number of entries in HEPEVT
static void set_number_entries( int noentries );
/// set particle status
static void set_status( int index, int status );
/// set particle ID
static void set_id( int index, int id );
/// define parents of a particle
static void set_parents( int index, int firstparent, int lastparent );
/// define children of a particle
static void set_children( int index, int firstchild, int lastchild );
/// set particle momentum
static void set_momentum( int index, double px, double py,
double pz, double e );
/// set particle mass
static void set_mass( int index, double mass );
/// set particle production vertex
static void set_position( int index, double x, double y, double z,
double t );
//////////////////////
// HEPEVT Floorplan //
//////////////////////
static unsigned int sizeof_int(); //!< size of integer in bytes
static unsigned int sizeof_real(); //!< size of real in bytes
static int max_number_entries(); //!< size of common block
static void set_sizeof_int(unsigned int); //!< define size of integer
static void set_sizeof_real(unsigned int); //!< define size of real
static void set_max_number_entries(unsigned int); //!< define size of common block
protected:
/// navigate a byte array
static double byte_num_to_double( unsigned int );
/// navigate a byte array
static int byte_num_to_int( unsigned int );
/// pretend common block is an array of bytes
static void write_byte_num( double, unsigned int );
/// pretend common block is an array of bytes
static void write_byte_num( int, unsigned int );
/// print output legend
static void print_legend( std::ostream& ostr = std::cout );
private:
static unsigned int s_sizeof_int;
static unsigned int s_sizeof_real;
static unsigned int s_max_number_entries;
};
//////////////////////////////
// HEPEVT Floorplan Inlines //
//////////////////////////////
inline unsigned int HEPEVT_Wrapper::sizeof_int(){ return s_sizeof_int; }
inline unsigned int HEPEVT_Wrapper::sizeof_real(){ return s_sizeof_real; }
inline int HEPEVT_Wrapper::max_number_entries()
{ return (int)s_max_number_entries; }
inline void HEPEVT_Wrapper::set_sizeof_int( unsigned int size )
{
if ( size != sizeof(short int) && size != sizeof(long int) && size != sizeof(int) ) {
std::cerr << "HepMC is not able to handle integers "
<< " of size other than 2 or 4."
<< " You requested: " << size << std::endl;
}
s_sizeof_int = size;
}
inline void HEPEVT_Wrapper::set_sizeof_real( unsigned int size ) {
if ( size != sizeof(float) && size != sizeof(double) ) {
std::cerr << "HepMC is not able to handle floating point numbers"
<< " of size other than 4 or 8."
<< " You requested: " << size << std::endl;
}
s_sizeof_real = size;
}
inline void HEPEVT_Wrapper::set_max_number_entries( unsigned int size ) {
s_max_number_entries = size;
}
inline double HEPEVT_Wrapper::byte_num_to_double( unsigned int b ) {
if ( b >= hepevt_bytes_allocation ) std::cerr
<< "HEPEVT_Wrapper: requested hepevt data exceeds allocation"
<< std::endl;
if ( s_sizeof_real == sizeof(float) ) {
float* myfloat = (float*)&hepevt.data[b];
return (double)(*myfloat);
} else if ( s_sizeof_real == sizeof(double) ) {
double* mydouble = (double*)&hepevt.data[b];
return (*mydouble);
} else {
std::cerr
<< "HEPEVT_Wrapper: illegal floating point number length."
<< s_sizeof_real << std::endl;
}
return 0;
}
inline int HEPEVT_Wrapper::byte_num_to_int( unsigned int b ) {
if ( b >= hepevt_bytes_allocation ) std::cerr
<< "HEPEVT_Wrapper: requested hepevt data exceeds allocation"
<< std::endl;
if ( s_sizeof_int == sizeof(short int) ) {
short int* myshortint = (short int*)&hepevt.data[b];
return (int)(*myshortint);
} else if ( s_sizeof_int == sizeof(long int) ) {
long int* mylongint = (long int*)&hepevt.data[b];
return (*mylongint);
// on some 64 bit machines, int, short, and long are all different
} else if ( s_sizeof_int == sizeof(int) ) {
int* myint = (int*)&hepevt.data[b];
return (*myint);
} else {
std::cerr
<< "HEPEVT_Wrapper: illegal integer number length."
<< s_sizeof_int << std::endl;
}
return 0;
}
inline void HEPEVT_Wrapper::write_byte_num( double in, unsigned int b ) {
if ( b >= hepevt_bytes_allocation ) std::cerr
<< "HEPEVT_Wrapper: requested hepevt data exceeds allocation"
<< std::endl;
if ( s_sizeof_real == sizeof(float) ) {
float* myfloat = (float*)&hepevt.data[b];
(*myfloat) = (float)in;
} else if ( s_sizeof_real == sizeof(double) ) {
double* mydouble = (double*)&hepevt.data[b];
(*mydouble) = (double)in;
} else {
std::cerr
<< "HEPEVT_Wrapper: illegal floating point number length."
<< s_sizeof_real << std::endl;
}
}
inline void HEPEVT_Wrapper::write_byte_num( int in, unsigned int b ) {
if ( b >= hepevt_bytes_allocation ) std::cerr
<< "HEPEVT_Wrapper: requested hepevt data exceeds allocation"
<< std::endl;
if ( s_sizeof_int == sizeof(short int) ) {
short int* myshortint = (short int*)&hepevt.data[b];
(*myshortint) = (short int)in;
} else if ( s_sizeof_int == sizeof(long int) ) {
long int* mylongint = (long int*)&hepevt.data[b];
(*mylongint) = (int)in;
// on some 64 bit machines, int, short, and long are all different
} else if ( s_sizeof_int == sizeof(int) ) {
int* myint = (int*)&hepevt.data[b];
(*myint) = (int)in;
} else {
std::cerr
<< "HEPEVT_Wrapper: illegal integer number length."
<< s_sizeof_int << std::endl;
}
}
//////////////
// INLINES //
//////////////
inline bool HEPEVT_Wrapper::is_double_precision()
{
// true if 8byte floating point numbers are used in the HepEVT common.
return ( sizeof(double) == sizeof_real() );
}
inline int HEPEVT_Wrapper::event_number()
{ return byte_num_to_int(0); }
inline int HEPEVT_Wrapper::number_entries()
{
int nhep = byte_num_to_int( 1*sizeof_int() );
return ( nhep <= max_number_entries() ?
nhep : max_number_entries() );
}
inline int HEPEVT_Wrapper::status( int index )
{ return byte_num_to_int( (2+index-1) * sizeof_int() ); }
inline int HEPEVT_Wrapper::id( int index )
{
return byte_num_to_int( (2+max_number_entries()+index-1)
* sizeof_int() );
}
inline int HEPEVT_Wrapper::first_parent( int index )
{
int parent = byte_num_to_int( (2+2*max_number_entries()+2*(index-1))
* sizeof_int() );
return ( parent > 0 && parent <= number_entries() ) ?
parent : 0;
}
inline int HEPEVT_Wrapper::last_parent( int index )
{
// Returns the Index of the LAST parent in the HEPEVT record
// for particle with Index index.
// If there is only one parent, the last parent is forced to
// be the same as the first parent.
// If there are no parents for this particle, both the first_parent
// and the last_parent with return 0.
// Error checking is done to ensure the parent is always
// within range ( 0 <= parent <= nhep )
//
int firstparent = first_parent(index);
int parent = byte_num_to_int( (2+2*max_number_entries()+2*(index-1)+1)
* sizeof_int() );
return ( parent > firstparent && parent <= number_entries() )
? parent : firstparent;
}
inline int HEPEVT_Wrapper::number_parents( int index ) {
int firstparent = first_parent(index);
return ( firstparent>0 ) ?
( 1+last_parent(index)-firstparent ) : 0;
}
inline int HEPEVT_Wrapper::first_child( int index )
{
int child = byte_num_to_int( (2+4*max_number_entries()+2*(index-1))
* sizeof_int() );
return ( child > 0 && child <= number_entries() ) ?
child : 0;
}
inline int HEPEVT_Wrapper::last_child( int index )
{
// Returns the Index of the LAST child in the HEPEVT record
// for particle with Index index.
// If there is only one child, the last child is forced to
// be the same as the first child.
// If there are no children for this particle, both the first_child
// and the last_child with return 0.
// Error checking is done to ensure the child is always
// within range ( 0 <= parent <= nhep )
//
int firstchild = first_child(index);
int child = byte_num_to_int( (2+4*max_number_entries()+2*(index-1)+1)
* sizeof_int() );
return ( child > firstchild && child <= number_entries() )
? child : firstchild;
}
inline int HEPEVT_Wrapper::number_children( int index )
{
int firstchild = first_child(index);
return ( firstchild>0 ) ?
( 1+last_child(index)-firstchild ) : 0;
}
inline double HEPEVT_Wrapper::px( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+0) *sizeof_real() );
}
inline double HEPEVT_Wrapper::py( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+1) *sizeof_real() );
}
inline double HEPEVT_Wrapper::pz( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+2) *sizeof_real() );
}
inline double HEPEVT_Wrapper::e( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+3) *sizeof_real() );
}
inline double HEPEVT_Wrapper::m( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+4) *sizeof_real() );
}
inline double HEPEVT_Wrapper::x( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ ( 5*max_number_entries()
+ (4*(index-1)+0) ) *sizeof_real() );
}
inline double HEPEVT_Wrapper::y( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ ( 5*max_number_entries()
+ (4*(index-1)+1) ) *sizeof_real() );
}
inline double HEPEVT_Wrapper::z( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ ( 5*max_number_entries()
+ (4*(index-1)+2) ) *sizeof_real() );
}
inline double HEPEVT_Wrapper::t( int index )
{
return byte_num_to_double( (2+6*max_number_entries())*sizeof_int()
+ ( 5*max_number_entries()
+ (4*(index-1)+3) ) *sizeof_real() );
}
inline void HEPEVT_Wrapper::set_event_number( int evtno )
{ write_byte_num( evtno, 0 ); }
inline void HEPEVT_Wrapper::set_number_entries( int noentries )
{ write_byte_num( noentries, 1*sizeof_int() ); }
inline void HEPEVT_Wrapper::set_status( int index, int status )
{
if ( index <= 0 || index > max_number_entries() ) return;
write_byte_num( status, (2+index-1) * sizeof_int() );
}
inline void HEPEVT_Wrapper::set_id( int index, int id )
{
if ( index <= 0 || index > max_number_entries() ) return;
write_byte_num( id, (2+max_number_entries()+index-1) *sizeof_int() );
}
inline void HEPEVT_Wrapper::set_parents( int index, int firstparent,
int lastparent )
{
if ( index <= 0 || index > max_number_entries() ) return;
write_byte_num( firstparent, (2+2*max_number_entries()+2*(index-1))
*sizeof_int() );
write_byte_num( lastparent, (2+2*max_number_entries()+2*(index-1)+1)
* sizeof_int() );
}
inline void HEPEVT_Wrapper::set_children( int index, int firstchild,
int lastchild )
{
if ( index <= 0 || index > max_number_entries() ) return;
write_byte_num( firstchild, (2+4*max_number_entries()+2*(index-1))
*sizeof_int() );
write_byte_num( lastchild, (2+4*max_number_entries()+2*(index-1)+1)
*sizeof_int() );
}
inline void HEPEVT_Wrapper::set_momentum( int index, double px,
double py, double pz, double e )
{
if ( index <= 0 || index > max_number_entries() ) return;
write_byte_num( px, (2+6*max_number_entries()) *sizeof_int()
+ (5*(index-1)+0) *sizeof_real() );
write_byte_num( py, (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+1) *sizeof_real() );
write_byte_num( pz, (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+2) *sizeof_real() );
write_byte_num( e, (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+3) *sizeof_real() );
}
inline void HEPEVT_Wrapper::set_mass( int index, double mass )
{
if ( index <= 0 || index > max_number_entries() ) return;
write_byte_num( mass, (2+6*max_number_entries())*sizeof_int()
+ (5*(index-1)+4) *sizeof_real() );
}
inline void HEPEVT_Wrapper::set_position( int index, double x, double y,
double z, double t )
{
if ( index <= 0 || index > max_number_entries() ) return;
write_byte_num( x, (2+6*max_number_entries())*sizeof_int()
+ ( 5*max_number_entries()
+ (4*(index-1)+0) ) *sizeof_real() );
write_byte_num( y, (2+6*max_number_entries())*sizeof_int()
+ ( 5*max_number_entries()
+ (4*(index-1)+1) ) *sizeof_real() );
write_byte_num( z, (2+6*max_number_entries())*sizeof_int()
+ ( 5*max_number_entries()
+ (4*(index-1)+2) ) *sizeof_real() );
write_byte_num( t, (2+6*max_number_entries())*sizeof_int()
+ ( 5*max_number_entries()
+ (4*(index-1)+3) ) *sizeof_real() );
}
} // HepMC
#endif // HEPMC_HEPEVT_WRAPPER_H
//--------------------------------------------------------------------------
|