This file is indexed.

/usr/include/Gyoto/GyotoAstrobj.h is in libgyoto4-dev 1.0.2-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
/**
 * \file GyotoAstrobj.h
 * \brief Astronomical objects (light emitters)
 *
 *  The target of ray-traced Gyoto::Photon
 */

/*
    Copyright 2011-2015 Thibaut Paumard, Frederic Vincent

    This file is part of Gyoto.

    Gyoto is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    Gyoto is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with Gyoto.  If not, see <http://www.gnu.org/licenses/>.
 */


#ifndef __GyotoAstrobj_H_ 
#define __GyotoAstrobj_H_ 

#include "GyotoConfig.h"

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>

#include <GyotoDefs.h>
#include <GyotoSmartPointer.h>
#include <GyotoConverters.h>
#include <GyotoObject.h>

namespace Gyoto{
  class Photon;
  namespace Register { class Entry; }
  namespace Metric { class Generic; }
  class FactoryMessenger;
  namespace Astrobj {
    class Generic;
    class Properties;

    /**
     * This is a more specific version of the
     * SmartPointee::Subcontractor_t type. An Astrobj::Subcontrator_t
     * is called by the Gyoto::Factory to build an instance of the
     * kind of astronomical object specified in an XML file (see
     * Register()). The Factory and Subcontractor_t function
     * communicate through a Gyoto::FactoryMessenger. A template is
     * provided so that you may not have to code anything.
     */
    typedef SmartPointer<Gyoto::Astrobj::Generic>
      Subcontractor_t(Gyoto::FactoryMessenger*);
    ///< A function to build instances of a specific Astrobj::Generic sub-class
 
    /**
     * Instead of reimplementing the wheel, your subcontractor can simply be
     * Gyoto::Astrobj::Subcontractor<MyKind>.
     *
     * If MyKind accepts any XML parameters, it should re-implement
     * Astrobj::Generic::setParameter() or, if low-level access to the
     * FactoryMessenger is needed, Generic::setParameters().
     *
     * \tparam T Gyoto::Astrobj::Generic sub-class
     */
    template<typename T> SmartPointer<Astrobj::Generic> Subcontractor
      (FactoryMessenger* fmp) {
      SmartPointer<T> ao = new T();
#ifdef GYOTO_USE_XERCES
      if (fmp) ao -> setParameters(fmp);
#endif
      return ao;
    }
    ///< A template for Subcontractor_t functions

   /**
     * Query the Astrobj register to get the Astrobj::Subcontractor_t
     * correspondig to a given kind name. This function is normally
     * called only from the Factory.
     *
     * \param name e.g. "Star"
     * \param errmode 1 to return NULL in case of failure instead of
     * throwing an Error.
     * \return pointer to the corresponding subcontractor.
     */
    Gyoto::Astrobj::Subcontractor_t* getSubcontractor(std::string name,
						      int errmode = 0);
    ///< Query the Astrobj register

    /**
     * Use the Astrobj::initRegister() once in your program to
     * initiliaze it, the Astrobj::Register() function to fill it, and
     * the Astrobj::getSubcontractor() function to query it.
     */
    extern Gyoto::Register::Entry * Register_;
    ///< The Astrobj register

     /**
      *  This must be called once.
      */
    void initRegister(); 
    ///< Empty the Astrobj register

    /**
     * Register a new Astrobj::Generic sub-class so that the
     * Gyoto::Factory knows it.
     *
     * \param name The kind name which identifies this object type in
     * an XML file, as in &lt;Astrobj kind="name"&gt;
     *
     * \param scp A pointer to the subcontractor, which will
     * communicate whith the Gyoto::Factory to build an instance of
     * the class from its XML description
     */
    void Register(std::string name, Gyoto::Astrobj::Subcontractor_t* scp);
    ///< Make an Astrobj kind known to the Factory
  }
}

/**
 * \namespace Gyoto::Astrobj
 * \brief Access to astronomical objects 
 *
 *  Objects which are supposed to be the target of the ray-tracing
 *  code should inherit from the Gyoto::Astrobj::Generic class.
 *
 *  When implementing a new object, you must:
 *    - make sure the object can be loaded from XML by providing a
 *      Subcontractor_t using the Gyoto::Astrobj::Register(std::string
 *      name, Gyoto::Astrobj::Subcontractor_t* scp) function;
 *    - make sure this subcontractor is registerred in the initialization
 *      routine of your plug-in;
 *    - make sure  Generic::Impact() works (see below).
 *
 *  In addition, you should make sure that your object plays nicely in
 *  the Yorick plug-in, which means:
 *    - implement the copy constructor and the Generic::clone() method;
 *    - implement the fillElement method, used for printing and saving to
 *      XML.
 *
 *  There are basically two ways of making Generic::Impact() work:
 *  either by making the Astrobj a sub-class of the low-level
 *  Gyoto::Astrobj::Generic class ans providing your own
 *  Generic::Impact() function (which, in principle, should rely on
 *  Generic::processHitQuantities()), or by making the Astrobj a
 *  sub-class of the higher-level Gyoto::Astrobj::Standard class and
 *  implementing two lower level, simpler functions which are
 *  used by the Standard::Impact():
 *    - Standard::operator()() yields a distance or potential defining
 *      the interior of the object;
 *    - Standard::getVelocity() yields the velocity field of the fluid.
 *
 *  Generic::processHitQuantities() itself is an intermediate-level
 *  function which you may choose to reimplement. It uses three
 *  low-level, easy to implement functions:
 *    - Generic::emission();
 *    - Generic::integrateEmission();
 *    - Generic::transmission().
 *  Default implementations of these three functions exist, they have
 *  little physical relevance but allow quick 0-th order vizualisation
 *  of your object.
 *
 * To be usable, a Astrobj::Generic (or Astrobj::Standard) sub-classe
 * should register an Astrobj::Subcontractor_t function using the
 * Astrobj::Register() function. See also \ref writing_plugins_page
 * . If your clas implements setParameter() and/or, if necessary,
 * setParameters(), registering it is normally done using the provided
 * template:
 * \code
 * Astrobj::Register("MyKind", &(Astrobj::Subcontractor<Astrobj::MyKind>));
 * \endcode
 */
/**
 * \class Gyoto::Astrobj::Generic
 * \brief Base class for astronomical object
 *
 * See introduction in the Gyoto::Astrobj namespace.
 */
class Gyoto::Astrobj::Generic
: public Gyoto::SmartPointee,
  public Gyoto::Object
{
  friend class Gyoto::SmartPointer<Gyoto::Astrobj::Generic>;


  // Data : 
  // -----
 protected:

  /**
   * \brief The Metric in this end of the Universe
   */
  SmartPointer<Gyoto::Metric::Generic> gg_;


  /**
   * Maximum distance from the center of the coordinate system at
   * which a photon may hit the object.  Child classes may compute a
   * decent value for #rmax_ at any time if #rmax_ is
   * DBL_MAX. External classes (Photons in particular) must use rMax()
   * to access this information.
   *
   * #rmax_ is in geometrical units.
   */                                         
  double rmax_; ///< Maximum distance to the center of the coordinate system [geometrical units]

  bool flag_radtransf_; ///< 1 if radiative transfer inside Astrobj, else 0

  int radiativeq_; ///< 1 to use the new radiativeQ function (under dvp)
  int noredshift_; ///< 1 to impose redshift factor g = 1
  // Constructors - Destructor
  // -------------------------
 public:
  GYOTO_OBJECT;

  /**
   *  #kind_ =  "Default", #rmax_ = DBL_MAX
   */
  Generic(); ///< Default constructor.

  /**
   *  #kind_ =  "Default", #rmax_ = radmax
   */
  Generic(double radmax); ///< Set rmax in constructor.

  /**
   *  #kind_ =  kind, #rmax_ = DBL_MAX
   */
  Generic(std::string kind); ///< Set kind in constructor.

  /**
   * Make a deep copy of an Astrobj::Generic instance
   */
  Generic(const Generic& ) ; ///< Copy constructor.

  /**
   * This method must be implemented by the various Astrobj::Generic
   * subclasses in order to support cloning:
   * \code
   * SmartPointer<Astrobj> deep_copy = original->clone();
   * \endcode
   *
   * Cloning is necessary for multi-threading, recommended for
   * interaction with the Yorick plug-in etc.
   *
   * Implementing it is very straightforward, as long as the copy
   * constructor Generic(const Generic& ) has been implemented:
   * \code
   * MyAstrobj* MyAstrobj::clone() const { return new MyAstrobj(*this); }
   * \endcode
   */
  virtual Generic* clone() const = 0 ; ///< Cloner
  
  virtual ~Generic() ; ///< Destructor: does nothing.

  // Accessors
  // ---------
 public:
  /**
   * \brief Get the Metric #gg_
   */
  virtual SmartPointer<Metric::Generic> metric() const;

  /**
   * \brief Set the Metric #gg_
   */
  virtual void metric(SmartPointer<Metric::Generic>) ;

  /**
   *  Get maximal distance from center of coordinate system at which a
   *  Photon may hit the object.
   *  
   *  Child classes may use the #rmax_ member to cache this value, if
   *  its current value is DBL_MAX.
   *
   *  It can also be set using rMax().
   *
   *  \return rmax_ in geometrical units
   */
  virtual double rMax(); ///< Get maximal distance from center of coordinate system
  virtual double rMax() const; ///< Get maximal distance from center of coordinate system

  /**
   *  Call rMax() and convert result to unit.
   *
   *  \param unit string
   *  \return double rmax converted to unit
   */
  virtual double rMax(std::string const &unit); ///< Get rmax_ is specified unit
  virtual double rMax(std::string const &unit) const; ///< Get rmax_ is specified unit

  /// Get max step constraint for adaptive integration
  /**
   * \param[in] coord position
   * \return max step to find this object reliably
   */
  virtual double deltaMax(double coord[8]);

  const std::string kind() const; ///< Get the kind of the Astrobj (e.g. "Star")

  /**
   *  Set maximal distance from center of coordinate system at which a
   *  Photon may hit the object.
   *  
   *  \param val new #rmax_ in geometrical units.
   */
  virtual void rMax(double val); ///< Set maximal distance from center of coordinate system

  /**
   *  Call Generic::rMax(double val) after converting val from unit
   *  to geometrical units.
   *
   *  \param val #rmax_ expressed in unit "unit";
   *  \param unit string...
   */
  virtual void rMax(double val, std::string const &unit); ///< Set maximal distance from center of coordinate system

  /**
   * Set flag indicating that radiative transfer should be integrated,
   * i.e. the object is to be considered optically thin.
   * \param flag: 1 if optically thin, 0 if optically thick.
   */
  void opticallyThin(bool flag);
  ///< Set whether the object is optically thin.
  /**
   * See opticallyThin(bool flag).
   */
  bool opticallyThin() const ;
  ///< Query whether object is optically thin.

  void radiativeQ(bool flag);
  bool radiativeQ() const ;

  void redshift(bool flag);
  bool redshift() const ;

  /**
   * Return a Gyoto::Quantity_t suitable as input to
   * Gyoto::Scenery::setRequestedQuantities() to set de default
   * quantities to compute for this object. The default of these
   * defaults GYOTO_QUANTITY_INTENSITY.
   */
  virtual Gyoto::Quantity_t getDefaultQuantities();
  ///< Which quantities to compute if know was requested

  //XML I/O
 public:

#ifdef GYOTO_USE_XERCES
  /**
   * \brief Main loop in Subcontractor_t function
   *
   * The Subcontractor_t function for each Astrobj kind should look
   * somewhat like this (templated as
   * Gyoto::Astrobj::Subcontractor<MyKind>):
   * \code
   * SmartPointer<Astrobj::Generic>
   * Gyoto::Astrobj::MyKind::Subcontractor(FactoryMessenger* fmp) {
   *   SmartPointer<MyKind> ao = new MyKind();
   *   ao -> setParameters(fmp);
   *   return ao;
   * }
   * \endcode
   *
   * Each object kind should implement setParameter(string name,
   * string content, string unit) to interpret the individual XML
   * elements. setParameters() can be overloaded in case the specific
   * Astrobj class needs low level access to the FactoryMessenger. See
   * UniformSphere::setParameters().
   */
  virtual void setParameters(FactoryMessenger *fmp);


#endif
  
  // Outputs
  // -------
 public:
  /**
   * Impact() checks whether a Photon impacts the object between two
   * integration steps of the photon's trajectory (those two steps are
   * photon->getCoord(index, coord1) and photon->getCoord(index+1,
   * coord2)). Impact returns 1 if the photon impacts the object
   * between these two steps, else 0. In many cases of geometrically
   * thick obects, the implementation Astrobj::Standard::Impact() will
   * be fine.
   *
   * Impact will call Generic::processHitQuantities() (which is
   * virtual and may be re-implemented) to compute observable
   * properties on demand: if the data pointer is non-NULL, the object
   * will look in it for pointers to properties which apply to its
   * kind. If a pointer to a property known to this object is present,
   * then the property is computed and store at the pointed-to
   * address. For instance, all objects know the "intensity"
   * property. If data->intensity != NULL, the instensity is computed
   * and stored in *data->intensity.
   *
   * If data is non-NULL and only in this case, processHitQuantities()
   * will also call ph->transmit() to update the transmissions of the
   * Photon (see Photon::transmit(size_t, double)). This must not be
   * done if data is NULL (see Astrobj::Complex::Impact() for an
   * explanation).
   *
   * \param ph   Gyoto::Photon aimed at the object;
   * \param index    Index of the last photon step;
   * \param data     Pointer to a structure to hold the observables at impact.
   *
   * \return 1 if impact, 0 if not.
   */
  virtual int Impact(Gyoto::Photon* ph, size_t index,
		     Astrobj::Properties *data=NULL) = 0 ;
  ///< Does a photon at these coordinates impact the object?
  
  /**
   * \brief Fills Astrobj::Properties
   *
   * processHitQuantities fills the requested data in Impact. To use
   * it, you need to call it in the Impact() method for your object in
   * case of hit. It will fill Redshift, Intensity, Spectrum,
   * BinSpectrum and update the Photon's transmission by calling
   * Photon::transmit(), only if data==NULL.
   *
   * You can overload it for your Astrobj. The generic implementation
   * calls emission(), integrateEmission() and transmission() below.
   */
  virtual void processHitQuantities(Photon* ph, double* coord_ph_hit,
                                   double* coord_obj_hit, double dt,
                                   Astrobj::Properties* data) const;

  /**
   * \brief Specific intensity I<SUB>&nu;</SUB>
   *
   * Called by the default implementation for processHitQuantities().
   *
   * emission() computes the intensity I<SUB>&nu;</SUB> emitted by the
   * small volume of length ds<SUB>em</SUB>, in the emitter's
   * frame. It should take self-absorption along ds<SUB>em</SUB> into
   * account.
   *
   * Reminder :
   *  - intensity = I<SUB>&nu;</SUB> [J m^-2 s^-1 ster^-1 Hz^-1];
   *
   *  - invariant intensity = I<SUB>&nu;</SUB>/&nu;<SUP>3</SUP>, which
   *    has the same value in any frame;
   *
   *  - emission coefficient = j<SUB>&nu;</SUB> [J m^-3 s^-1 ster^-1
   *    Hz^-1] , defined by dI<SUB>&nu;</SUB> = j<SUB>&nu;</SUB>*ds,
   *    where ds is the distance travelled by the photon inside the
   *    object;
   *  - invariant emission coef = j<SUB>&nu;</SUB>/&nu;<SUP>2</SUP>,
   *    which has the same value in any frame.
   *
   * The equation used for radiative transfer (without absorption) is:
   *
   *    d(I<SUB>&nu;</SUB>/&nu;<SUP>3</SUP>)/d&lambda; = (j<SUB>&nu;</SUB>/&nu;<SUP>2</SUP>)  [*]
   *
   * where &lambda; is the integration parameter along the null geodesic.
   *
   * NB: Let us consider a particular observer, with &nu; being the
   * frequency measured by this observer, and ds being the proper
   * distance (as measured by the observer) that the photon travels
   * as it moves from &lambda; to &lambda;+d&lambda; along its
   * geodesic.  Then it can be shown that:
   *
   *    d&lambda; = ds/&nu;
   *
   * This shows that Eq. [*] is homogeneous.
   *
   * The default implementation returns 1. if optically thick and ds<SUB>em</SUB>
   * if optically thin. It allows for a quick implementation of your
   * object for visualization purposes.
   *
   * \param nu_em Frequency at emission [Hz]
   * \param dsem length over which to integrate inside the object
   *        [geometrical units]
   * \param coord_ph Photon coordinate
   * \param coord_obj Emitter coordinate at current photon position
   */
  virtual double emission(double nu_em, double dsem, double coord_ph[8],
			  double coord_obj[8]=NULL)
    const ;

  /**
   * \brief Specific intensity I<SUB>&nu;</SUB> for several values of &nu;<SUB>em</SUB>
   *
   * Called by the default implementation for processHitQuantities().
   *
   * emission() computes the intensity I<SUB>&nu;</SUB> emitted by the small
   * volume of length dsem. It should take self-absorption along dsem
   * into account.
   *
   * Same as emission(double nu_em, double dsem, double coord_ph[8],
   *		  double coord_obj[8]=NULL) const
   * looping on several values of nu_em.
   *
   * \param Inu[nbnu] Output (must be set to a previously allocated
   *        array of doubles)
   * \param nu_em[nbnu] Frequencies at emission
   * \param nbnu Size of Inu[] and nu_em[] 
   * \param dsem Length over which to integrate inside the object
   * \param coord_ph Photon coordinate
   * \param coord_obj Emitter coordinate at current photon position
   * \return I<SUB>&nu;</SUB> or dI<SUB>&nu;</SUB> [W m-2 sr-2]
   */
  virtual void emission(double Inu[], double nu_em[], size_t nbnu,
			double dsem, double coord_ph[8],
			double coord_obj[8]=NULL) const ; 

  // Under development
  virtual void radiativeQ(double Inu[], double Taunu[], 
			  double nu_em[], size_t nbnu,
			  double dsem, double coord_ph[8],
			  double coord_obj[8]=NULL) const ; 

  /**
   * Compute the integral of emission() from &nu;<SUB>1</SUB> to
   * &nu;<SUB>2</SUB>. The default implementation is a numerical
   * integrator which works well enough and is reasonably fast if
   * emission() is a smooth function (i.e. no emission or absorption
   * lines). If possible, it is wise to implement an analytical
   * solution. It is used by processHitQuantities to compute the
   * "BinSpectrum" quantity which is the most physical: it is the only
   * quantity that can be actually measured directly by a real-life
   * instrument.
   */
  virtual double integrateEmission(double nu1, double nu2, double dsem,
                                  double c_ph[8], double c_obj[8]=NULL) const;
    ///< &int;<SUB>&nu;<SUB>1</SUB></SUB><SUP>&nu;<SUB>2</SUB></SUP> I<SUB>&nu;</SUB> d&nu; (or j<SUB>&nu;</SUB>)

  /**
   * Like double integrateEmission(double nu1, double nu2, double
   * dsem, double c_ph[8], double c_obj[8]) const for each
   * Spectrometer channel.
   */
  virtual void integrateEmission(double * I, double const * boundaries,
				 size_t const * chaninds, size_t nbnu,
				 double dsem, double *cph, double *co) const;
    ///< &int;<SUB>&nu;<SUB>1</SUB></SUB><SUP>&nu;<SUB>2</SUB></SUP> I<SUB>&nu;</SUB> d&nu; (or j<SUB>&nu;</SUB>)

  /**
   * transmission() computes the transmission of this fluid element or
   * 0 if optically thick. The default implementation returns 1. (no
   * attenuation) if optically thin, 0. if optically thick.
   *
   * \param nuem frequency in the fluid's frame
   * \param coord Photon coordinate
   * \param dsem geometrical length in geometrical units
   */
  virtual double transmission(double nuem, double dsem, double coord[8]) const ;
     ///< Transmission: exp( &alpha;<SUB>&nu;</SUB> * ds<SUB>em</SUB> )

};

/**
 * \class Gyoto::Astrobj::Properties
 * \brief Observable properties of an Astronomical object
 *
 *  The sort of properties one wants to measure on a ray-traced
 *  Gyoto::Photon which hits a Gyoto::Astrobj. Not all Astrobj are
 *  able to fill all of these properties.
 *
 *  An instance of Properties essentially contains a bunch of pointers
 *  to memory areas where the observable quantities (see Quantity_t)
 *  should be stored.
 *
 *  Astrobj::Generic::processHitQuantities() fills the various arrays
 *  upon request.  A quantity is ignored if the corresponding pointer
 *  is NULL.
 *
 *  Scenery::operator()() increments the Properties between each
 *  Photon using Properties::operator++().
 *
 *  The main application (gyoto, the yorick plug-in, or your user
 *  application) is responsible for allocating the various arrays,
 *  filling the various members of Properties, and doing whatever
 *  meaninful with the arrays after they have been filled with values
 *  by the ray-tracing code (e.g. saving them to disk or displaying
 *  them).
 *
 *  Also see Gyoto::Scenery and Gyoto::Quantity_t.
 */
class Gyoto::Astrobj::Properties : public Gyoto::SmartPointee {
  friend class Gyoto::SmartPointer<Gyoto::Astrobj::Properties>;
 public:
  double *intensity; ///< GYOTO_QUANTITY_INTENSITY   : Intensity
  double *time; ///< GYOTO_QUANTITY_EMISSIONTIME: EmissionTime

  /**
   * Behaves like the square of the closest distance between Photon
   * and Astrobj (but not exactly that). Initialize it to DBL_MAX from
   * float.h.;
   */
  double *distance; ///< GYOTO_QUANTITY_MIN_DISTANCE: MinDistance

  /**
   * First local minimum in distance from object
   */
  double * first_dmin; ///< GYOTO_QUANTITY_FIRST_DMIN  : FirstDmin

  /**
   * Properties::first_dmin will be set to the first local minimum and
   * Properties::first_dmin_found will be set to 1 if a local minimum
   * in distance is found. Initialize it to 0.
   */
  int first_dmin_found; ///< Whether Properties::first_dmin was found

  /**
   * Redshift factor &nu;<SUB>obs</SUB>/&nu;<SUB>em</SUB> (necessary
   * for emission lines computation)
   */
  double *redshift; ///< GYOTO_QUANTITY_REDSHIFT    : RedShift

  /**
   * I<SUB>&nu;</SUB> (&nu;) (observed specific intensity)
   */
  double *spectrum; ///< GYOTO_QUANTITY_SPECTRUM    : Spectrum

  /**
   *  I<SUB>&nu;<SUB>1</SUB></SUB><SUP>&nu;<SUB>2</SUB></SUP>, the
   *  integral of I<SUB>&nu;</SUB> over each spectral channel
   *  (i.e. what a spectrometer would measure)
   */
  double *binspectrum; ///< GYOTO_QUANTITY_BINSPECTRUM : BinSpectrum

  /**
   *  Spectra elements are separated by offset doubles in memory. In
   *  other words, the ith spectral element is spectrum[i*offset].
   */
  ptrdiff_t offset; ///< How to jump from one spectral element to the next

  /**
   * Coordinates of the object and photon at impact
   */
  double * impactcoords; ///< GYOTO_QUANTITY_IMPACTCOORDS: ImpactCoords

  /**
   * \brief GYOTO_QUANTITY_USER1       : User1
   * Astrobj-specific quantity
   */
  double *user1;

  /**
   * \brief GYOTO_QUANTITY_USER2       : User2
   * Astrobj-specific quantity
   */
  double *user2;

  /**
   * \brief GYOTO_QUANTITY_USER3       : User3
   * Astrobj-specific quantity
   */
  double *user3;

  /**
   * \brief GYOTO_QUANTITY_USER4       : User4
   * Astrobj-specific quantity
   */
  double *user4;

  /**
   * \brief GYOTO_QUANTITY_USER5       : User5
   * Astrobj-specific quantity
   */
  double *user5;
# ifdef HAVE_UDUNITS
  /**
   * \brief Converter between SI (J.m <SUP> -2</SUP>.s<SUP>-1</SUP>.sr<SUP>-1</SUP>.Hz<SUP>-1</SUP>) and requested Intensity unit
   */
  Gyoto::SmartPointer<Gyoto::Units::Converter> intensity_converter_ ;
  /**
   * \brief Converter between SI (J.m <SUP> -2</SUP>.s<SUP>-1</SUP>.sr<SUP>-1</SUP>.Hz<SUP>-1</SUP>) and requested Spectrum unit
   */
  Gyoto::SmartPointer<Gyoto::Units::Converter> spectrum_converter_ ;
  /**
   * \brief Converter between SI (J.m <SUP> -2</SUP>.s<SUP>-1</SUP>.sr<SUP>-1</SUP>) and requested BinSpectrum unit
   */
  Gyoto::SmartPointer<Gyoto::Units::Converter> binspectrum_converter_ ;
# endif

  /// True if buffers are allocated for entire field (npix*npix)
  bool alloc;

 public:
  Properties(); ///< Default constructor (everything is set to NULL);
  Properties (double*, double*); ///<< Set intensity and time pointers.

  /**
   * \brief Initialize observable quantities
   *
   * The pointed-to values are initialized as follows (if the
   * corresponding pointer is not NULL):
   *
   * - intensity, firt_dmin_found, redshift, userN: 0
   * - time, distance, first_dmin: DBL_MAX
   * - for spectrum and binspectrum, nbnuobs values separated by offset in memory are initialized to 0
   * - for impactcoords, 16 contiguous values are initialized to DBL_MAX
   */
  void init(size_t nbnuobs=0);

  /**
   * \brief Increment pointers
   *
   * All valid pointers are incremented by 1 (sizeof(double)), excepted
   * impactcoords which is incremented by 16.
   */
  Properties& operator++();

  /**
   * \brief Increment pointers by offset
   *
   * All valid pointers are incremented by offset (sizeof(double)), excepted
   * impactcoords which is incremented by 16*offset.
   */
  Properties& operator+=(ptrdiff_t offset);

  operator Gyoto::Quantity_t () const;

# ifdef HAVE_UDUNITS
  void intensityConverter(Gyoto::SmartPointer<Gyoto::Units::Converter>);
  ///< Set Properties::intentity_converter_
  void intensityConverter(std::string);
  ///< Set Properties::intentity_converter_
  void spectrumConverter(Gyoto::SmartPointer<Gyoto::Units::Converter>);
  ///< Set Properties::spectrum_converter_
  void spectrumConverter(std::string);
  ///< Set Properties::spectrum_converter_
  void binSpectrumConverter(Gyoto::SmartPointer<Gyoto::Units::Converter>);
  ///< Set Properties::binspectrum_converter_
  void binSpectrumConverter(std::string);
  ///< Set Properties::binspectrum_converter_
# endif
};

#endif