/usr/include/gromacs/math/vec.h is in libgromacs-dev 5.1.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 | /*
* This file is part of the GROMACS molecular simulation package.
*
* Copyright (c) 1991-2000, University of Groningen, The Netherlands.
* Copyright (c) 2001-2004, The GROMACS development team.
* Copyright (c) 2013,2014, by the GROMACS development team, led by
* Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
* and including many others, as listed in the AUTHORS file in the
* top-level source directory and at http://www.gromacs.org.
*
* GROMACS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1
* of the License, or (at your option) any later version.
*
* GROMACS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with GROMACS; if not, see
* http://www.gnu.org/licenses, or write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* If you want to redistribute modifications to GROMACS, please
* consider that scientific software is very special. Version
* control is crucial - bugs must be traceable. We will be happy to
* consider code for inclusion in the official distribution, but
* derived work must not be called official GROMACS. Details are found
* in the README & COPYING files - if they are missing, get the
* official version at http://www.gromacs.org.
*
* To help us fund GROMACS development, we humbly ask that you cite
* the research papers on the package. Check out http://www.gromacs.org.
*/
#ifndef GMX_MATH_VEC_H
#define GMX_MATH_VEC_H
/*
collection of in-line ready operations:
lookup-table optimized scalar operations:
real gmx_invsqrt(real x)
real sqr(real x)
double dsqr(double x)
vector operations:
void rvec_add(const rvec a,const rvec b,rvec c) c = a + b
void dvec_add(const dvec a,const dvec b,dvec c) c = a + b
void ivec_add(const ivec a,const ivec b,ivec c) c = a + b
void rvec_inc(rvec a,const rvec b) a += b
void dvec_inc(dvec a,const dvec b) a += b
void ivec_inc(ivec a,const ivec b) a += b
void rvec_sub(const rvec a,const rvec b,rvec c) c = a - b
void dvec_sub(const dvec a,const dvec b,dvec c) c = a - b
void rvec_dec(rvec a,rvec b) a -= b
void copy_rvec(const rvec a,rvec b) b = a (reals)
void copy_dvec(const dvec a,dvec b) b = a (reals)
void copy_ivec(const ivec a,ivec b) b = a (integers)
void ivec_sub(const ivec a,const ivec b,ivec c) c = a - b
void svmul(real a,rvec v1,rvec v2) v2 = a * v1
void dsvmul(double a,dvec v1,dvec v2) v2 = a * v1
void clear_rvec(rvec a) a = 0
void clear_dvec(dvec a) a = 0
void clear_ivec(rvec a) a = 0
void clear_rvecs(int n,rvec v[])
real iprod(rvec a,rvec b) = a . b (inner product)
double diprod(dvec a,dvec b) = a . b (inner product)
real iiprod(ivec a,ivec b) = a . b (integers)
real norm2(rvec a) = | a |^2 ( = x*y*z )
double dnorm2(dvec a) = | a |^2 ( = x*y*z )
real norm(rvec a) = | a |
double dnorm(dvec a) = | a |
void cprod(rvec a,rvec b,rvec c) c = a x b (cross product)
void dprod(rvec a,rvec b,rvec c) c = a x b (cross product)
void dprod(rvec a,rvec b,rvec c) c = a * b (direct product)
real cos_angle(rvec a,rvec b)
real cos_angle_no_table(rvec a,rvec b)
real distance2(rvec v1, rvec v2) = | v2 - v1 |^2
void unitv(rvec src,rvec dest) dest = src / |src|
void unitv_no_table(rvec src,rvec dest) dest = src / |src|
matrix (3x3) operations:
! indicates that dest should not be the same as a, b or src
the _ur0 varieties work on matrices that have only zeros
in the upper right part, such as box matrices, these varieties
could produce less rounding errors, not due to the operations themselves,
but because the compiler can easier recombine the operations
void copy_mat(matrix a,matrix b) b = a
void clear_mat(matrix a) a = 0
void mmul(matrix a,matrix b,matrix dest) ! dest = a . b
void mmul_ur0(matrix a,matrix b,matrix dest) dest = a . b
void transpose(matrix src,matrix dest) ! dest = src*
void tmmul(matrix a,matrix b,matrix dest) ! dest = a* . b
void mtmul(matrix a,matrix b,matrix dest) ! dest = a . b*
real det(matrix a) = det(a)
void m_add(matrix a,matrix b,matrix dest) dest = a + b
void m_sub(matrix a,matrix b,matrix dest) dest = a - b
void msmul(matrix m1,real r1,matrix dest) dest = r1 * m1
void m_inv_ur0(matrix src,matrix dest) dest = src^-1
void m_inv(matrix src,matrix dest) ! dest = src^-1
void mvmul(matrix a,rvec src,rvec dest) ! dest = a . src
void mvmul_ur0(matrix a,rvec src,rvec dest) dest = a . src
void tmvmul_ur0(matrix a,rvec src,rvec dest) dest = a* . src
real trace(matrix m) = trace(m)
*/
/* The file only depends on config.h for GMX_SOFTWARE_INVSQRT and
HAVE_*SQRT*. This is no problem with public headers because
it is OK if user code uses a different rsqrt implementation */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "gromacs/math/units.h"
#include "gromacs/math/utilities.h"
#include "gromacs/math/vectypes.h"
#include "gromacs/utility/basedefinitions.h"
#include "gromacs/utility/fatalerror.h"
#include "gromacs/utility/real.h"
#ifdef __cplusplus
extern "C" {
#elif 0
} /* avoid screwing up indentation */
#endif
#ifdef GMX_SOFTWARE_INVSQRT
#define EXP_LSB 0x00800000
#define EXP_MASK 0x7f800000
#define EXP_SHIFT 23
#define FRACT_MASK 0x007fffff
#define FRACT_SIZE 11 /* significant part of fraction */
#define FRACT_SHIFT (EXP_SHIFT-FRACT_SIZE)
#define EXP_ADDR(val) (((val)&EXP_MASK)>>EXP_SHIFT)
#define FRACT_ADDR(val) (((val)&(FRACT_MASK|EXP_LSB))>>FRACT_SHIFT)
extern const unsigned int gmx_invsqrt_exptab[];
extern const unsigned int gmx_invsqrt_fracttab[];
typedef union
{
unsigned int bval;
float fval;
} t_convert;
static gmx_inline real gmx_software_invsqrt(real x)
{
const real half = 0.5;
const real three = 3.0;
t_convert result, bit_pattern;
unsigned int exp, fract;
real lu;
real y;
#ifdef GMX_DOUBLE
real y2;
#endif
bit_pattern.fval = x;
exp = EXP_ADDR(bit_pattern.bval);
fract = FRACT_ADDR(bit_pattern.bval);
result.bval = gmx_invsqrt_exptab[exp] | gmx_invsqrt_fracttab[fract];
lu = result.fval;
y = (half*lu*(three-((x*lu)*lu)));
#ifdef GMX_DOUBLE
y2 = (half*y*(three-((x*y)*y)));
return y2; /* 10 Flops */
#else
return y; /* 5 Flops */
#endif
}
#define gmx_invsqrt(x) gmx_software_invsqrt(x)
#define INVSQRT_DONE
#endif /* gmx_invsqrt */
#ifndef INVSQRT_DONE
# ifdef GMX_DOUBLE
# ifdef HAVE_RSQRT
# define gmx_invsqrt(x) rsqrt(x)
# else
# define gmx_invsqrt(x) (1.0/sqrt(x))
# endif
# else /* single */
# ifdef HAVE_RSQRTF
# define gmx_invsqrt(x) rsqrtf(x)
# elif defined HAVE_RSQRT
# define gmx_invsqrt(x) rsqrt(x)
# elif defined HAVE_SQRTF
# define gmx_invsqrt(x) (1.0/sqrtf(x))
# else
# define gmx_invsqrt(x) (1.0/sqrt(x))
# endif
# endif
#endif
static gmx_inline real sqr(real x)
{
return (x*x);
}
static gmx_inline double dsqr(double x)
{
return (x*x);
}
/* Maclaurin series for sinh(x)/x, useful for NH chains and MTTK pressure control
Here, we compute it to 10th order, which might be overkill, 8th is probably enough,
but it's not very much more expensive. */
static gmx_inline real series_sinhx(real x)
{
real x2 = x*x;
return (1 + (x2/6.0)*(1 + (x2/20.0)*(1 + (x2/42.0)*(1 + (x2/72.0)*(1 + (x2/110.0))))));
}
static gmx_inline void rvec_add(const rvec a, const rvec b, rvec c)
{
real x, y, z;
x = a[XX]+b[XX];
y = a[YY]+b[YY];
z = a[ZZ]+b[ZZ];
c[XX] = x;
c[YY] = y;
c[ZZ] = z;
}
static gmx_inline void dvec_add(const dvec a, const dvec b, dvec c)
{
double x, y, z;
x = a[XX]+b[XX];
y = a[YY]+b[YY];
z = a[ZZ]+b[ZZ];
c[XX] = x;
c[YY] = y;
c[ZZ] = z;
}
static gmx_inline void ivec_add(const ivec a, const ivec b, ivec c)
{
int x, y, z;
x = a[XX]+b[XX];
y = a[YY]+b[YY];
z = a[ZZ]+b[ZZ];
c[XX] = x;
c[YY] = y;
c[ZZ] = z;
}
static gmx_inline void rvec_inc(rvec a, const rvec b)
{
real x, y, z;
x = a[XX]+b[XX];
y = a[YY]+b[YY];
z = a[ZZ]+b[ZZ];
a[XX] = x;
a[YY] = y;
a[ZZ] = z;
}
static gmx_inline void dvec_inc(dvec a, const dvec b)
{
double x, y, z;
x = a[XX]+b[XX];
y = a[YY]+b[YY];
z = a[ZZ]+b[ZZ];
a[XX] = x;
a[YY] = y;
a[ZZ] = z;
}
static gmx_inline void rvec_sub(const rvec a, const rvec b, rvec c)
{
real x, y, z;
x = a[XX]-b[XX];
y = a[YY]-b[YY];
z = a[ZZ]-b[ZZ];
c[XX] = x;
c[YY] = y;
c[ZZ] = z;
}
static gmx_inline void dvec_sub(const dvec a, const dvec b, dvec c)
{
double x, y, z;
x = a[XX]-b[XX];
y = a[YY]-b[YY];
z = a[ZZ]-b[ZZ];
c[XX] = x;
c[YY] = y;
c[ZZ] = z;
}
static gmx_inline void rvec_dec(rvec a, const rvec b)
{
real x, y, z;
x = a[XX]-b[XX];
y = a[YY]-b[YY];
z = a[ZZ]-b[ZZ];
a[XX] = x;
a[YY] = y;
a[ZZ] = z;
}
static gmx_inline void copy_rvec(const rvec a, rvec b)
{
b[XX] = a[XX];
b[YY] = a[YY];
b[ZZ] = a[ZZ];
}
static gmx_inline void copy_rvecn(gmx_cxx_const rvec *a, rvec *b, int startn, int endn)
{
int i;
for (i = startn; i < endn; i++)
{
b[i][XX] = a[i][XX];
b[i][YY] = a[i][YY];
b[i][ZZ] = a[i][ZZ];
}
}
static gmx_inline void copy_dvec(const dvec a, dvec b)
{
b[XX] = a[XX];
b[YY] = a[YY];
b[ZZ] = a[ZZ];
}
static gmx_inline void copy_ivec(const ivec a, ivec b)
{
b[XX] = a[XX];
b[YY] = a[YY];
b[ZZ] = a[ZZ];
}
static gmx_inline void ivec_sub(const ivec a, const ivec b, ivec c)
{
int x, y, z;
x = a[XX]-b[XX];
y = a[YY]-b[YY];
z = a[ZZ]-b[ZZ];
c[XX] = x;
c[YY] = y;
c[ZZ] = z;
}
static gmx_inline void copy_mat(gmx_cxx_const matrix a, matrix b)
{
copy_rvec(a[XX], b[XX]);
copy_rvec(a[YY], b[YY]);
copy_rvec(a[ZZ], b[ZZ]);
}
static gmx_inline void svmul(real a, const rvec v1, rvec v2)
{
v2[XX] = a*v1[XX];
v2[YY] = a*v1[YY];
v2[ZZ] = a*v1[ZZ];
}
static gmx_inline void dsvmul(double a, const dvec v1, dvec v2)
{
v2[XX] = a*v1[XX];
v2[YY] = a*v1[YY];
v2[ZZ] = a*v1[ZZ];
}
static gmx_inline real distance2(const rvec v1, const rvec v2)
{
return sqr(v2[XX]-v1[XX]) + sqr(v2[YY]-v1[YY]) + sqr(v2[ZZ]-v1[ZZ]);
}
static gmx_inline void clear_rvec(rvec a)
{
/* The ibm compiler has problems with inlining this
* when we use a const real variable
*/
a[XX] = 0.0;
a[YY] = 0.0;
a[ZZ] = 0.0;
}
static gmx_inline void clear_dvec(dvec a)
{
/* The ibm compiler has problems with inlining this
* when we use a const real variable
*/
a[XX] = 0.0;
a[YY] = 0.0;
a[ZZ] = 0.0;
}
static gmx_inline void clear_ivec(ivec a)
{
a[XX] = 0;
a[YY] = 0;
a[ZZ] = 0;
}
static gmx_inline void clear_rvecs(int n, rvec v[])
{
int i;
for (i = 0; (i < n); i++)
{
clear_rvec(v[i]);
}
}
static gmx_inline void clear_mat(matrix a)
{
const real nul = 0.0;
a[XX][XX] = a[XX][YY] = a[XX][ZZ] = nul;
a[YY][XX] = a[YY][YY] = a[YY][ZZ] = nul;
a[ZZ][XX] = a[ZZ][YY] = a[ZZ][ZZ] = nul;
}
static gmx_inline real iprod(const rvec a, const rvec b)
{
return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
}
static gmx_inline double diprod(const dvec a, const dvec b)
{
return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
}
static gmx_inline int iiprod(const ivec a, const ivec b)
{
return (a[XX]*b[XX]+a[YY]*b[YY]+a[ZZ]*b[ZZ]);
}
static gmx_inline real norm2(const rvec a)
{
return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
}
static gmx_inline double dnorm2(const dvec a)
{
return a[XX]*a[XX]+a[YY]*a[YY]+a[ZZ]*a[ZZ];
}
/* WARNING:
* As dnorm() uses sqrt() (which is slow) _only_ use it if you are sure you
* don't need 1/dnorm(), otherwise use dnorm2()*dinvnorm(). */
static gmx_inline double dnorm(const dvec a)
{
return sqrt(diprod(a, a));
}
/* WARNING:
* As norm() uses sqrtf() (which is slow) _only_ use it if you are sure you
* don't need 1/norm(), otherwise use norm2()*invnorm(). */
static gmx_inline real norm(const rvec a)
{
/* This is ugly, but we deliberately do not define gmx_sqrt() and handle the
* float/double case here instead to avoid gmx_sqrt() being accidentally used. */
#ifdef GMX_DOUBLE
return dnorm(a);
#elif defined HAVE_SQRTF
return sqrtf(iprod(a, a));
#else
return sqrt(iprod(a, a));
#endif
}
static gmx_inline real invnorm(const rvec a)
{
return gmx_invsqrt(norm2(a));
}
static gmx_inline real dinvnorm(const dvec a)
{
return gmx_invsqrt(dnorm2(a));
}
/* WARNING:
* Do _not_ use these routines to calculate the angle between two vectors
* as acos(cos_angle(u,v)). While it might seem obvious, the acos function
* is very flat close to -1 and 1, which will lead to accuracy-loss.
* Instead, use the new gmx_angle() function directly.
*/
static gmx_inline real
cos_angle(const rvec a, const rvec b)
{
/*
* ax*bx + ay*by + az*bz
* cos-vec (a,b) = ---------------------
* ||a|| * ||b||
*/
real cosval;
int m;
double aa, bb, ip, ipa, ipb, ipab; /* For accuracy these must be double! */
ip = ipa = ipb = 0.0;
for (m = 0; (m < DIM); m++) /* 18 */
{
aa = a[m];
bb = b[m];
ip += aa*bb;
ipa += aa*aa;
ipb += bb*bb;
}
ipab = ipa*ipb;
if (ipab > 0)
{
cosval = ip*gmx_invsqrt(ipab); /* 7 */
}
else
{
cosval = 1;
}
/* 25 TOTAL */
if (cosval > 1.0)
{
return 1.0;
}
if (cosval < -1.0)
{
return -1.0;
}
return cosval;
}
/* WARNING:
* Do _not_ use these routines to calculate the angle between two vectors
* as acos(cos_angle(u,v)). While it might seem obvious, the acos function
* is very flat close to -1 and 1, which will lead to accuracy-loss.
* Instead, use the new gmx_angle() function directly.
*/
static gmx_inline real
cos_angle_no_table(const rvec a, const rvec b)
{
/* This version does not need the invsqrt lookup table */
real cosval;
int m;
double aa, bb, ip, ipa, ipb; /* For accuracy these must be double! */
ip = ipa = ipb = 0.0;
for (m = 0; (m < DIM); m++) /* 18 */
{
aa = a[m];
bb = b[m];
ip += aa*bb;
ipa += aa*aa;
ipb += bb*bb;
}
cosval = ip/sqrt(ipa*ipb); /* 12 */
/* 30 TOTAL */
if (cosval > 1.0)
{
return 1.0;
}
if (cosval < -1.0)
{
return -1.0;
}
return cosval;
}
static gmx_inline void cprod(const rvec a, const rvec b, rvec c)
{
c[XX] = a[YY]*b[ZZ]-a[ZZ]*b[YY];
c[YY] = a[ZZ]*b[XX]-a[XX]*b[ZZ];
c[ZZ] = a[XX]*b[YY]-a[YY]*b[XX];
}
static gmx_inline void dcprod(const dvec a, const dvec b, dvec c)
{
c[XX] = a[YY]*b[ZZ]-a[ZZ]*b[YY];
c[YY] = a[ZZ]*b[XX]-a[XX]*b[ZZ];
c[ZZ] = a[XX]*b[YY]-a[YY]*b[XX];
}
/* This routine calculates the angle between a & b without any loss of accuracy close to 0/PI.
* If you only need cos(theta), use the cos_angle() routines to save a few cycles.
* This routine is faster than it might appear, since atan2 is accelerated on many CPUs (e.g. x86).
*/
static gmx_inline real
gmx_angle(const rvec a, const rvec b)
{
rvec w;
real wlen, s;
cprod(a, b, w);
wlen = norm(w);
s = iprod(a, b);
return atan2(wlen, s);
}
static gmx_inline void mmul_ur0(gmx_cxx_const matrix a, gmx_cxx_const matrix b, matrix dest)
{
dest[XX][XX] = a[XX][XX]*b[XX][XX];
dest[XX][YY] = 0.0;
dest[XX][ZZ] = 0.0;
dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX];
dest[YY][YY] = a[YY][YY]*b[YY][YY];
dest[YY][ZZ] = 0.0;
dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
dest[ZZ][YY] = a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
dest[ZZ][ZZ] = a[ZZ][ZZ]*b[ZZ][ZZ];
}
static gmx_inline void mmul(gmx_cxx_const matrix a, gmx_cxx_const matrix b, matrix dest)
{
dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[XX][YY]*b[YY][XX]+a[XX][ZZ]*b[ZZ][XX];
dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[YY][ZZ]*b[ZZ][XX];
dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
dest[XX][YY] = a[XX][XX]*b[XX][YY]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[ZZ][YY];
dest[YY][YY] = a[YY][XX]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[ZZ][YY];
dest[ZZ][YY] = a[ZZ][XX]*b[XX][YY]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
dest[XX][ZZ] = a[XX][XX]*b[XX][ZZ]+a[XX][YY]*b[YY][ZZ]+a[XX][ZZ]*b[ZZ][ZZ];
dest[YY][ZZ] = a[YY][XX]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[YY][ZZ]*b[ZZ][ZZ];
dest[ZZ][ZZ] = a[ZZ][XX]*b[XX][ZZ]+a[ZZ][YY]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
}
static gmx_inline void transpose(gmx_cxx_const matrix src, matrix dest)
{
dest[XX][XX] = src[XX][XX];
dest[YY][XX] = src[XX][YY];
dest[ZZ][XX] = src[XX][ZZ];
dest[XX][YY] = src[YY][XX];
dest[YY][YY] = src[YY][YY];
dest[ZZ][YY] = src[YY][ZZ];
dest[XX][ZZ] = src[ZZ][XX];
dest[YY][ZZ] = src[ZZ][YY];
dest[ZZ][ZZ] = src[ZZ][ZZ];
}
static gmx_inline void tmmul(gmx_cxx_const matrix a, gmx_cxx_const matrix b, matrix dest)
{
/* Computes dest=mmul(transpose(a),b,dest) - used in do_pr_pcoupl */
dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[YY][XX]*b[YY][XX]+a[ZZ][XX]*b[ZZ][XX];
dest[XX][YY] = a[XX][XX]*b[XX][YY]+a[YY][XX]*b[YY][YY]+a[ZZ][XX]*b[ZZ][YY];
dest[XX][ZZ] = a[XX][XX]*b[XX][ZZ]+a[YY][XX]*b[YY][ZZ]+a[ZZ][XX]*b[ZZ][ZZ];
dest[YY][XX] = a[XX][YY]*b[XX][XX]+a[YY][YY]*b[YY][XX]+a[ZZ][YY]*b[ZZ][XX];
dest[YY][YY] = a[XX][YY]*b[XX][YY]+a[YY][YY]*b[YY][YY]+a[ZZ][YY]*b[ZZ][YY];
dest[YY][ZZ] = a[XX][YY]*b[XX][ZZ]+a[YY][YY]*b[YY][ZZ]+a[ZZ][YY]*b[ZZ][ZZ];
dest[ZZ][XX] = a[XX][ZZ]*b[XX][XX]+a[YY][ZZ]*b[YY][XX]+a[ZZ][ZZ]*b[ZZ][XX];
dest[ZZ][YY] = a[XX][ZZ]*b[XX][YY]+a[YY][ZZ]*b[YY][YY]+a[ZZ][ZZ]*b[ZZ][YY];
dest[ZZ][ZZ] = a[XX][ZZ]*b[XX][ZZ]+a[YY][ZZ]*b[YY][ZZ]+a[ZZ][ZZ]*b[ZZ][ZZ];
}
static gmx_inline void mtmul(gmx_cxx_const matrix a, gmx_cxx_const matrix b, matrix dest)
{
/* Computes dest=mmul(a,transpose(b),dest) - used in do_pr_pcoupl */
dest[XX][XX] = a[XX][XX]*b[XX][XX]+a[XX][YY]*b[XX][YY]+a[XX][ZZ]*b[XX][ZZ];
dest[XX][YY] = a[XX][XX]*b[YY][XX]+a[XX][YY]*b[YY][YY]+a[XX][ZZ]*b[YY][ZZ];
dest[XX][ZZ] = a[XX][XX]*b[ZZ][XX]+a[XX][YY]*b[ZZ][YY]+a[XX][ZZ]*b[ZZ][ZZ];
dest[YY][XX] = a[YY][XX]*b[XX][XX]+a[YY][YY]*b[XX][YY]+a[YY][ZZ]*b[XX][ZZ];
dest[YY][YY] = a[YY][XX]*b[YY][XX]+a[YY][YY]*b[YY][YY]+a[YY][ZZ]*b[YY][ZZ];
dest[YY][ZZ] = a[YY][XX]*b[ZZ][XX]+a[YY][YY]*b[ZZ][YY]+a[YY][ZZ]*b[ZZ][ZZ];
dest[ZZ][XX] = a[ZZ][XX]*b[XX][XX]+a[ZZ][YY]*b[XX][YY]+a[ZZ][ZZ]*b[XX][ZZ];
dest[ZZ][YY] = a[ZZ][XX]*b[YY][XX]+a[ZZ][YY]*b[YY][YY]+a[ZZ][ZZ]*b[YY][ZZ];
dest[ZZ][ZZ] = a[ZZ][XX]*b[ZZ][XX]+a[ZZ][YY]*b[ZZ][YY]+a[ZZ][ZZ]*b[ZZ][ZZ];
}
static gmx_inline real det(gmx_cxx_const matrix a)
{
return ( a[XX][XX]*(a[YY][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[YY][ZZ])
-a[YY][XX]*(a[XX][YY]*a[ZZ][ZZ]-a[ZZ][YY]*a[XX][ZZ])
+a[ZZ][XX]*(a[XX][YY]*a[YY][ZZ]-a[YY][YY]*a[XX][ZZ]));
}
static gmx_inline void m_add(gmx_cxx_const matrix a, gmx_cxx_const matrix b, matrix dest)
{
dest[XX][XX] = a[XX][XX]+b[XX][XX];
dest[XX][YY] = a[XX][YY]+b[XX][YY];
dest[XX][ZZ] = a[XX][ZZ]+b[XX][ZZ];
dest[YY][XX] = a[YY][XX]+b[YY][XX];
dest[YY][YY] = a[YY][YY]+b[YY][YY];
dest[YY][ZZ] = a[YY][ZZ]+b[YY][ZZ];
dest[ZZ][XX] = a[ZZ][XX]+b[ZZ][XX];
dest[ZZ][YY] = a[ZZ][YY]+b[ZZ][YY];
dest[ZZ][ZZ] = a[ZZ][ZZ]+b[ZZ][ZZ];
}
static gmx_inline void m_sub(gmx_cxx_const matrix a, gmx_cxx_const matrix b, matrix dest)
{
dest[XX][XX] = a[XX][XX]-b[XX][XX];
dest[XX][YY] = a[XX][YY]-b[XX][YY];
dest[XX][ZZ] = a[XX][ZZ]-b[XX][ZZ];
dest[YY][XX] = a[YY][XX]-b[YY][XX];
dest[YY][YY] = a[YY][YY]-b[YY][YY];
dest[YY][ZZ] = a[YY][ZZ]-b[YY][ZZ];
dest[ZZ][XX] = a[ZZ][XX]-b[ZZ][XX];
dest[ZZ][YY] = a[ZZ][YY]-b[ZZ][YY];
dest[ZZ][ZZ] = a[ZZ][ZZ]-b[ZZ][ZZ];
}
static gmx_inline void msmul(gmx_cxx_const matrix m1, real r1, matrix dest)
{
dest[XX][XX] = r1*m1[XX][XX];
dest[XX][YY] = r1*m1[XX][YY];
dest[XX][ZZ] = r1*m1[XX][ZZ];
dest[YY][XX] = r1*m1[YY][XX];
dest[YY][YY] = r1*m1[YY][YY];
dest[YY][ZZ] = r1*m1[YY][ZZ];
dest[ZZ][XX] = r1*m1[ZZ][XX];
dest[ZZ][YY] = r1*m1[ZZ][YY];
dest[ZZ][ZZ] = r1*m1[ZZ][ZZ];
}
static gmx_inline void m_inv_ur0(gmx_cxx_const matrix src, matrix dest)
{
double tmp = src[XX][XX]*src[YY][YY]*src[ZZ][ZZ];
if (fabs(tmp) <= 100*GMX_REAL_MIN)
{
gmx_fatal(FARGS, "Can not invert matrix, determinant is zero");
}
dest[XX][XX] = 1/src[XX][XX];
dest[YY][YY] = 1/src[YY][YY];
dest[ZZ][ZZ] = 1/src[ZZ][ZZ];
dest[ZZ][XX] = (src[YY][XX]*src[ZZ][YY]*dest[YY][YY]
- src[ZZ][XX])*dest[XX][XX]*dest[ZZ][ZZ];
dest[YY][XX] = -src[YY][XX]*dest[XX][XX]*dest[YY][YY];
dest[ZZ][YY] = -src[ZZ][YY]*dest[YY][YY]*dest[ZZ][ZZ];
dest[XX][YY] = 0.0;
dest[XX][ZZ] = 0.0;
dest[YY][ZZ] = 0.0;
}
static gmx_inline void m_inv(gmx_cxx_const matrix src, matrix dest)
{
const real smallreal = (real)1.0e-24;
const real largereal = (real)1.0e24;
real deter, c, fc;
deter = det(src);
c = (real)1.0/deter;
fc = (real)fabs(c);
if ((fc <= smallreal) || (fc >= largereal))
{
gmx_fatal(FARGS, "Can not invert matrix, determinant = %e", deter);
}
dest[XX][XX] = c*(src[YY][YY]*src[ZZ][ZZ]-src[ZZ][YY]*src[YY][ZZ]);
dest[XX][YY] = -c*(src[XX][YY]*src[ZZ][ZZ]-src[ZZ][YY]*src[XX][ZZ]);
dest[XX][ZZ] = c*(src[XX][YY]*src[YY][ZZ]-src[YY][YY]*src[XX][ZZ]);
dest[YY][XX] = -c*(src[YY][XX]*src[ZZ][ZZ]-src[ZZ][XX]*src[YY][ZZ]);
dest[YY][YY] = c*(src[XX][XX]*src[ZZ][ZZ]-src[ZZ][XX]*src[XX][ZZ]);
dest[YY][ZZ] = -c*(src[XX][XX]*src[YY][ZZ]-src[YY][XX]*src[XX][ZZ]);
dest[ZZ][XX] = c*(src[YY][XX]*src[ZZ][YY]-src[ZZ][XX]*src[YY][YY]);
dest[ZZ][YY] = -c*(src[XX][XX]*src[ZZ][YY]-src[ZZ][XX]*src[XX][YY]);
dest[ZZ][ZZ] = c*(src[XX][XX]*src[YY][YY]-src[YY][XX]*src[XX][YY]);
}
static gmx_inline void mvmul(gmx_cxx_const matrix a, const rvec src, rvec dest)
{
dest[XX] = a[XX][XX]*src[XX]+a[XX][YY]*src[YY]+a[XX][ZZ]*src[ZZ];
dest[YY] = a[YY][XX]*src[XX]+a[YY][YY]*src[YY]+a[YY][ZZ]*src[ZZ];
dest[ZZ] = a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
}
static gmx_inline void mvmul_ur0(gmx_cxx_const matrix a, const rvec src, rvec dest)
{
dest[ZZ] = a[ZZ][XX]*src[XX]+a[ZZ][YY]*src[YY]+a[ZZ][ZZ]*src[ZZ];
dest[YY] = a[YY][XX]*src[XX]+a[YY][YY]*src[YY];
dest[XX] = a[XX][XX]*src[XX];
}
static gmx_inline void tmvmul_ur0(gmx_cxx_const matrix a, const rvec src, rvec dest)
{
dest[XX] = a[XX][XX]*src[XX]+a[YY][XX]*src[YY]+a[ZZ][XX]*src[ZZ];
dest[YY] = a[YY][YY]*src[YY]+a[ZZ][YY]*src[ZZ];
dest[ZZ] = a[ZZ][ZZ]*src[ZZ];
}
static gmx_inline void unitv(const rvec src, rvec dest)
{
real linv;
linv = gmx_invsqrt(norm2(src));
dest[XX] = linv*src[XX];
dest[YY] = linv*src[YY];
dest[ZZ] = linv*src[ZZ];
}
static gmx_inline void unitv_no_table(const rvec src, rvec dest)
{
real linv;
linv = 1.0/sqrt(norm2(src));
dest[XX] = linv*src[XX];
dest[YY] = linv*src[YY];
dest[ZZ] = linv*src[ZZ];
}
static void calc_lll(const rvec box, rvec lll)
{
lll[XX] = 2.0*M_PI/box[XX];
lll[YY] = 2.0*M_PI/box[YY];
lll[ZZ] = 2.0*M_PI/box[ZZ];
}
static gmx_inline real trace(gmx_cxx_const matrix m)
{
return (m[XX][XX]+m[YY][YY]+m[ZZ][ZZ]);
}
static gmx_inline real _divide_err(real a, real b, const char *file, int line)
{
if (fabs(b) <= GMX_REAL_MIN)
{
gmx_fatal(FARGS, "Dividing by zero, file %s, line %d", file, line);
}
return a/b;
}
static gmx_inline int _mod(int a, int b, char *file, int line)
{
if (b == 0)
{
gmx_fatal(FARGS, "Modulo zero, file %s, line %d", file, line);
}
return a % b;
}
/* Operations on multidimensional rvecs, used e.g. in edsam.c */
static gmx_inline void m_rveccopy(int dim, gmx_cxx_const rvec *a, rvec *b)
{
/* b = a */
int i;
for (i = 0; i < dim; i++)
{
copy_rvec(a[i], b[i]);
}
}
/*computer matrix vectors from base vectors and angles */
static gmx_inline void matrix_convert(matrix box, const rvec vec, rvec angle)
{
svmul(DEG2RAD, angle, angle);
box[XX][XX] = vec[XX];
box[YY][XX] = vec[YY]*cos(angle[ZZ]);
box[YY][YY] = vec[YY]*sin(angle[ZZ]);
box[ZZ][XX] = vec[ZZ]*cos(angle[YY]);
box[ZZ][YY] = vec[ZZ]
*(cos(angle[XX])-cos(angle[YY])*cos(angle[ZZ]))/sin(angle[ZZ]);
box[ZZ][ZZ] = sqrt(sqr(vec[ZZ])
-box[ZZ][XX]*box[ZZ][XX]-box[ZZ][YY]*box[ZZ][YY]);
}
#define divide_err(a, b) _divide_err((a), (b), __FILE__, __LINE__)
#define mod(a, b) _mod((a), (b), __FILE__, __LINE__)
#ifdef __cplusplus
}
#endif
#endif
|