This file is indexed.

/usr/include/libgoffice-0.10/goffice/math/go-regression.h is in libgoffice-0.10-dev 0.10.28-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#ifndef GO_UTILS_REGRESSION_H
#define GO_UTILS_REGRESSION_H

#include <glib.h>
#include <glib-object.h>

G_BEGIN_DECLS

typedef enum {
	GO_REG_ok,
	GO_REG_invalid_dimensions,
	GO_REG_invalid_data,
	GO_REG_not_enough_data,
	GO_REG_near_singular_good,	/* Probably good result */
	GO_REG_near_singular_bad, 	/* Probably bad result */
	GO_REG_singular
} GORegressionResult;

typedef struct {
        double *se;		/* SE for each parameter estimator */
        double *t;  		/* t values for each parameter estimator */
        double sqr_r;
	double adj_sqr_r;
        double se_y; 		/* The Standard Error of Y */
        double F;
        int    df_reg;
        int    df_resid;
        int    df_total;
        double ss_reg;
        double ss_resid;
        double ss_total;
        double ms_reg;
        double ms_resid;
	double ybar;
	double *xbar;
	double var; 		/* The variance of the entire regression: sum(errors^2)/(n-xdim) */
	/*<private>*/
	unsigned ref_count;
} go_regression_stat_t;
#define GORegressionStat go_regression_stat_t

GType            go_regression_stat_get_type      (void);
go_regression_stat_t 	*go_regression_stat_new 	(void);
void 			 go_regression_stat_destroy 	(go_regression_stat_t *stat_);

GORegressionResult 	 go_linear_regression 		(double **xss, int dim,
							 const double *ys, int n,
							 gboolean affine,
							 double *res,
							 go_regression_stat_t *stat_);
GORegressionResult       go_linear_regression_leverage  (double **A, double *d,
							 int m, int n);
GORegressionResult 	 go_exponential_regression 	(double **xss, int dim,
							 const double *ys, int n,
							 gboolean affine,
							 double *res,
							 go_regression_stat_t *stat_);
GORegressionResult 	 go_exponential_regression_as_log 	(double **xss, int dim,
							 const double *ys, int n,
							 gboolean affine,
							 double *res,
							 go_regression_stat_t *stat_);
GORegressionResult 	 go_power_regression 	(double **xss, int dim,
							 const double *ys, int n,
							 gboolean affine,
							 double *res,
							 go_regression_stat_t *stat_);
GORegressionResult 	 go_logarithmic_regression 	(double **xss, int dim,
							 const double *ys, int n,
							 gboolean affine,
							 double *res,
							 go_regression_stat_t *stat_);

/* Final accuracy of c is: width of x-range rounded to the next smaller
 * (10^integer), the result times GO_LOGFIT_C_ACCURACY.
 * If you change it, remember to change the help-text for LOGFIT.
 * FIXME: Is there a way to stringify this macros value for the help-text? */
#define GO_LOGFIT_C_ACCURACY 0.000001

/* Stepwidth for testing for sign is: width of x-range
 * times GO_LOGFIT_C_STEP_FACTOR. Value is tested a bit. */
#define GO_LOGFIT_C_STEP_FACTOR 0.05

/* Width of fitted c-range is: width of x-range
 * times GO_LOGFIT_C_RANGE_FACTOR. Value is tested a bit.
 * Point clouds with a local minimum of squared residuals outside the fitted
 * c-range are very weakly bent. */
#define GO_LOGFIT_C_RANGE_FACTOR 100

GORegressionResult go_logarithmic_fit (double *xs,
				       const double *ys, int n,
				       double *res);

typedef GORegressionResult (*GORegressionFunction) (double * x, double * params, double *f);

GORegressionResult go_non_linear_regression (GORegressionFunction f,
					     double **xvals,
					     double *par,
					     double *yvals,
					     double *sigmas,
					     int x_dim,
					     int p_dim,
					     double *chi,
					     double *errors);

gboolean go_matrix_invert 	(double **A, int n);
double   go_matrix_determinant 	(double *const *const A, int n);

void     go_matrix_pseudo_inverse (double *const * const A, int m, int n,
				   double threshold,
				   double **B);

GORegressionResult go_linear_solve (double *const *const A,
				    const double *b,
				    int n,
				    double *res);
GORegressionResult go_linear_solve_multiple (double *const *const A,
					     double **B,
					     int n, int bn);

#ifdef GOFFICE_WITH_LONG_DOUBLE
typedef struct {
        long double *se; /*SE for each parameter estimator*/
        long double *t;  /*t values for each parameter estimator*/
        long double sqr_r;
	long double adj_sqr_r;
        long double se_y; /* The Standard Error of Y */
        long double F;
        int        df_reg;
        int        df_resid;
        int        df_total;
        long double ss_reg;
        long double ss_resid;
        long double ss_total;
        long double ms_reg;
        long double ms_resid;
	long double ybar;
	long double *xbar;
	long double var; /* The variance of the entire regression:
			sum(errors^2)/(n-xdim) */
	/*<private>*/
	unsigned ref_count;
} go_regression_stat_tl;
#define GORegressionStatl go_regression_stat_tl

GType            go_regression_statl_get_type      (void);
go_regression_stat_tl *go_regression_stat_newl	(void);
void 		    go_regression_stat_destroyl	(go_regression_stat_tl *stat_);

GORegressionResult    go_linear_regressionl   	(long double **xss, int dim,
						 const long double *ys, int n,
						 gboolean affine,
						 long double *res,
						 go_regression_stat_tl *stat_);
GORegressionResult    go_linear_regression_leveragel (long double **A,
						      long double *d,
						      int m, int n);
GORegressionResult    go_exponential_regressionl	(long double **xss, int dim,
						 const long double *ys, int n,
						 gboolean affine,
						 long double *res,
						 go_regression_stat_tl *stat_);
GORegressionResult    go_exponential_regression_as_logl	(long double **xss, int dim,
						 const long double *ys, int n,
						 gboolean affine,
						 long double *res,
						 go_regression_stat_tl *stat_);
GORegressionResult    go_power_regressionl 	(long double **xss, int dim,
						 const long double *ys, int n,
						 gboolean affine,
						 long double *res,
						 go_regression_stat_tl *stat_);
GORegressionResult    go_logarithmic_regressionl(long double **xss, int dim,
						 const long double *ys, int n,
						 gboolean affine,
						 long double *res,
						 go_regression_stat_tl *stat_);
GORegressionResult    go_logarithmic_fitl 	(long double *xs,
						 const long double *ys, int n,
						 long double *res);

typedef GORegressionResult (*GORegressionFunctionl) (long double * x, long double * params, long double *f);

GORegressionResult    go_non_linear_regressionl	(GORegressionFunctionl f,
						 long double **xvals,
						 long double *par,
						 long double *yvals,
						 long double *sigmas,
						 int x_dim,
						 int p_dim,
						 long double *chi,
						 long double *errors);

gboolean    go_matrix_invertl 		(long double **A, int n);
long double go_matrix_determinantl 	(long double *const * const A, int n);

void     go_matrix_pseudo_inversel (long double *const * const A, int m, int n,
				    long double threshold,
				    long double **B);

GORegressionResult go_linear_solvel (long double *const *const A,
				     const long double *b,
				     int n,
				     long double *res);
GORegressionResult go_linear_solve_multiplel (long double *const *const A,
					      long double **B,
					      int n, int bn);

#endif

G_END_DECLS

#endif /* GO_UTILS_REGRESSION_H */