/usr/share/criterion/templates/default.tpl is in libghc-criterion-dev 1.1.0.0-4build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>criterion report</title>
<script language="javascript" type="text/javascript">
{{#include}}js/jquery-2.1.1.min.js{{/include}}
</script>
<script language="javascript" type="text/javascript">
{{#include}}js/jquery.flot-0.8.3.min.js{{/include}}
</script>
<script language="javascript" type="text/javascript">
{{#include}}js/jquery.criterion.js{{/include}}
</script>
<style type="text/css">
{{#include}}criterion.css{{/include}}
</style>
<!--[if !IE 7]>
<style type="text/css">
#wrap {display:table;height:100%}
</style>
<![endif]-->
</head>
<body>
<div id="wrap">
<div id="main" class="body">
<h1>criterion performance measurements</h1>
<h2>overview</h2>
<p><a href="#grokularation">want to understand this report?</a></p>
<div id="overview" class="ovchart" style="width:900px;height:100px;"></div>
{{#report}}
<h2><a name="b{{number}}">{{name}}</a></h2>
<table width="100%">
<tbody>
<tr>
<td><div id="kde{{number}}" class="kdechart"
style="width:450px;height:278px;"></div></td>
<td><div id="time{{number}}" class="timechart"
style="width:450px;height:278px;"></div></td>
<!--
<td><div id="cycle{{number}}" class="cyclechart"
style="width:300px;height:278px;"></div></td>
-->
</tr>
</tbody>
</table>
<table>
<thead class="analysis">
<th></th>
<th class="cibound"
title="{{anMean.estConfidenceLevel}} confidence level">lower bound</th>
<th>estimate</th>
<th class="cibound"
title="{{anMean.estConfidenceLevel}} confidence level">upper bound</th>
</thead>
<tbody>
<tr>
<td>OLS regression</td>
<td><span class="confinterval olstimelb{{number}}">xxx</span></td>
<td><span class="olstimept{{number}}">xxx</span></td>
<td><span class="confinterval olstimeub{{number}}">xxx</span></td>
</tr>
<tr>
<td>R² goodness-of-fit</td>
<td><span class="confinterval olsr2lb{{number}}">xxx</span></td>
<td><span class="olsr2pt{{number}}">xxx</span></td>
<td><span class="confinterval olsr2ub{{number}}">xxx</span></td>
</tr>
<tr>
<td>Mean execution time</td>
<td><span class="confinterval citime">{{anMean.estLowerBound}}</span></td>
<td><span class="time">{{anMean.estPoint}}</span></td>
<td><span class="confinterval citime">{{anMean.estUpperBound}}</span></td>
</tr>
<tr>
<td>Standard deviation</td>
<td><span class="confinterval citime">{{anStdDev.estLowerBound}}</span></td>
<td><span class="time">{{anStdDev.estPoint}}</span></td>
<td><span class="confinterval citime">{{anStdDev.estUpperBound}}</span></td>
</tr>
</tbody>
</table>
<span class="outliers">
<p>Outlying measurements have {{anOutlierVar.ovDesc}}
(<span class="percent">{{anOutlierVar.ovFraction}}</span>%)
effect on estimated standard deviation.</p>
</span>
{{/report}}
<h2><a name="grokularation">understanding this report</a></h2>
<p>In this report, each function benchmarked by criterion is assigned
a section of its own. The charts in each section are active; if
you hover your mouse over data points and annotations, you will see
more details.</p>
<ul>
<li>The chart on the left is a
<a href="http://en.wikipedia.org/wiki/Kernel_density_estimation">kernel
density estimate</a> (also known as a KDE) of time
measurements. This graphs the probability of any given time
measurement occurring. A spike indicates that a measurement of a
particular time occurred; its height indicates how often that
measurement was repeated.</li>
<li>The chart on the right is the raw data from which the kernel
density estimate is built. The <i>x</i> axis indicates the
number of loop iterations, while the <i>y</i> axis shows measured
execution time for the given number of loop iterations. The
line behind the values is the linear regression prediction of
execution time for a given number of iterations. Ideally, all
measurements will be on (or very near) this line.</li>
</ul>
<p>Under the charts is a small table.
The first two rows are the results of a linear regression run
on the measurements displayed in the right-hand chart.</p>
<ul>
<li><i>OLS regression</i> indicates the
time estimated for a single loop iteration using an ordinary
least-squares regression model. This number is more accurate
than the <i>mean</i> estimate below it, as it more effectively
eliminates measurement overhead and other constant factors.</li>
<li><i>R² goodness-of-fit</i> is a measure of how
accurately the linear regression model fits the observed
measurements. If the measurements are not too noisy, R²
should lie between 0.99 and 1, indicating an excellent fit. If
the number is below 0.99, something is confounding the accuracy
of the linear model.</li>
<li><i>Mean execution time</i> and <i>standard deviation</i> are
statistics calculated from execution time
divided by number of iterations.</li>
</ul>
<p>We use a statistical technique called
the <a href="http://en.wikipedia.org/wiki/Bootstrapping_(statistics)">bootstrap</a>
to provide confidence intervals on our estimates. The
bootstrap-derived upper and lower bounds on estimates let you see
how accurate we believe those estimates to be. (Hover the mouse
over the table headers to see the confidence levels.)</p>
<p>A noisy benchmarking environment can cause some or many
measurements to fall far from the mean. These outlying
measurements can have a significant inflationary effect on the
estimate of the standard deviation. We calculate and display an
estimate of the extent to which the standard deviation has been
inflated by outliers.</p>
<script type="text/javascript">
$(function () {
function mangulate(rpt) {
var measured = function(key) {
var idx = rpt.reportKeys.indexOf(key);
return rpt.reportMeasured.map(function(r) { return r[idx]; });
};
var number = rpt.reportNumber;
var name = rpt.reportName;
var mean = rpt.reportAnalysis.anMean.estPoint;
var iters = measured("iters");
var times = measured("time");
var kdetimes = rpt.reportKDEs[0].kdeValues;
var kdepdf = rpt.reportKDEs[0].kdePDF;
var meanSecs = mean;
var units = $.timeUnits(mean);
var rgrs = rpt.reportAnalysis.anRegress[0];
var scale = units[0];
var olsTime = rgrs.regCoeffs.iters;
$(".olstimept" + number).text(function() {
return $.renderTime(olsTime.estPoint);
});
$(".olstimelb" + number).text(function() {
return $.renderTime(olsTime.estLowerBound);
});
$(".olstimeub" + number).text(function() {
return $.renderTime(olsTime.estUpperBound);
});
$(".olsr2pt" + number).text(function() {
return rgrs.regRSquare.estPoint.toFixed(3);
});
$(".olsr2lb" + number).text(function() {
return rgrs.regRSquare.estLowerBound.toFixed(3);
});
$(".olsr2ub" + number).text(function() {
return rgrs.regRSquare.estUpperBound.toFixed(3);
});
mean *= scale;
kdetimes = $.scaleBy(scale, kdetimes);
var kq = $("#kde" + number);
var k = $.plot(kq,
[{ label: name + " time densities",
data: $.zip(kdetimes, kdepdf),
}],
{ xaxis: { tickFormatter: $.unitFormatter(scale) },
yaxis: { ticks: false },
grid: { borderColor: "#777",
hoverable: true, markings: [ { color: '#6fd3fb',
lineWidth: 1.5, xaxis: { from: mean, to: mean } } ] },
});
var o = k.pointOffset({ x: mean, y: 0});
kq.append('<div class="meanlegend" title="' + $.renderTime(meanSecs) +
'" style="position:absolute;left:' + (o.left + 4) +
'px;bottom:139px;">mean</div>');
$.addTooltip("#kde" + number,
function(secs) { return $.renderTime(secs / scale); });
var timepairs = new Array(times.length);
var lastiter = iters[iters.length-1];
var olspairs = [[0,0], [lastiter, lastiter * scale * olsTime.estPoint]];
for (var i = 0; i < times.length; i++)
timepairs[i] = [iters[i],times[i]*scale];
iterFormatter = function() {
var denom = 0;
return function(iters) {
if (iters == 0)
return '';
if (denom > 0)
return (iters / denom).toFixed();
var power;
if (iters >= 1e9) {
denom = '1e9'; power = '⁹';
}
if (iters >= 1e6) {
denom = '1e6'; power = '⁶';
}
else if (iters >= 1e3) {
denom = '1e3'; power = '³';
}
else denom = 1;
if (denom > 1) {
iters = (iters / denom).toFixed();
iters += '×10' + power + ' iters';
} else {
iters += ' iters';
}
return iters;
};
};
$.plot($("#time" + number),
[{ label: "regression", data: olspairs,
lines: { show: true } },
{ label: name + " times", data: timepairs,
points: { show: true } }],
{ grid: { borderColor: "#777", hoverable: true },
xaxis: { tickFormatter: iterFormatter() },
yaxis: { tickFormatter: $.unitFormatter(scale) } });
$.addTooltip("#time" + number,
function(iters,secs) {
return ($.renderTime(secs / scale) + ' / ' +
iters.toLocaleString() + ' iters');
});
if (0) {
var cyclepairs = new Array(cycles.length);
for (var i = 0; i < cycles.length; i++)
cyclepairs[i] = [cycles[i],i];
$.plot($("#cycle" + number),
[{ label: name + " cycles",
data: cyclepairs }],
{ points: { show: true },
grid: { borderColor: "#777", hoverable: true },
xaxis: { tickFormatter:
function(cycles,axis) { return cycles + ' cycles'; }},
yaxis: { ticks: false },
});
$.addTooltip("#cycles" + number, function(x,y) { return x + ' cycles'; });
}
};
var reports = {{json}};
reports.map(mangulate);
var benches = [{{#report}}"{{name}}",{{/report}}];
var ylabels = [{{#report}}[-{{number}},'<a href="#b{{number}}">{{name}}</a>'],{{/report}}];
var means = $.scaleTimes([{{#report}}{{anMean.estPoint}},{{/report}}]);
var xs = [];
var prev = null;
for (var i = 0; i < means[0].length; i++) {
var name = benches[i].split(/\//);
name.pop();
name = name.join('/');
if (name != prev) {
xs.push({ label: name, data: [[means[0][i], -i]]});
prev = name;
}
else
xs[xs.length-1].data.push([means[0][i],-i]);
}
var oq = $("#overview");
o = $.plot(oq, xs, { bars: { show: true, horizontal: true,
barWidth: 0.75, align: "center" },
grid: { borderColor: "#777", hoverable: true },
legend: { show: xs.length > 1 },
xaxis: { max: Math.max.apply(undefined,means[0]) * 1.02 },
yaxis: { ticks: ylabels, tickColor: '#ffffff' } });
if (benches.length > 3)
o.getPlaceholder().height(28*benches.length);
o.resize();
o.setupGrid();
o.draw();
$.addTooltip("#overview", function(x,y) { return $.renderTime(x / means[1]); });
});
$(document).ready(function () {
$(".time").text(function(_, text) {
return $.renderTime(text);
});
$(".citime").text(function(_, text) {
return $.renderTime(text);
});
$(".percent").text(function(_, text) {
return (text*100).toFixed(1);
});
});
</script>
</div>
</div>
<div id="footer">
<div class="body">
<div class="footfirst">
<h2>colophon</h2>
<p>This report was created using the
<a href="http://hackage.haskell.org/package/criterion">criterion</a>
benchmark execution and performance analysis tool.</p>
<p>Criterion is developed and maintained
by <a href="http://www.serpentine.com/blog/">Bryan O'Sullivan</a>.</p>
</div>
</div>
</div>
</body>
</html>
|