This file is indexed.

/usr/include/gerris/function.h is in libgfs-mpi-dev 20131206+dfsg-7.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/* Gerris - The GNU Flow Solver
 * Copyright (C) 2001 National Institute of Water and Atmospheric Research
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.  
 */

#ifndef __FUNCTION_H__
#define __FUNCTION_H__

#define NODATA GFS_NODATA

static double Dirichlet = 1.;
static double Neumann = 0.;
static GfsSimulation * _sim = NULL;
static FttCell * _cell = NULL;

static double dd (const gchar * name, FttComponent c) {
  GfsVariable * v = gfs_variable_from_name (GFS_DOMAIN (_sim)->variables, name);
  if (v == NULL)
    return 0.;
  g_return_val_if_fail (_cell != NULL, 0.);
  return gfs_dimensional_value (v, gfs_center_gradient (_cell, c, v->i)/
				(_sim->physical_params.L*ftt_cell_size (_cell)));
}

static double dd2 (const gchar * name, FttComponent c) {
  GfsVariable * v = gfs_variable_from_name (GFS_DOMAIN (_sim)->variables, name);
  if (v == NULL)
    return 0.;
  g_return_val_if_fail (_cell != NULL, 0.);
  FttCellFace f1 = ftt_cell_face (_cell, 2*c);
  FttCellFace f2 = ftt_cell_face (_cell, 2*c + 1);
  if (f1.neighbor && f2.neighbor) {
    GfsGradient g1, g2;
    gfs_face_gradient (&f1, &g1, v->i, -1);
    gfs_face_gradient (&f2, &g2, v->i, -1);
    return gfs_dimensional_value (v, (g1.b + g2.b - (g1.a + g2.a)*GFS_VALUE (_cell, v))
				  /pow (_sim->physical_params.L*ftt_cell_size (_cell), 2.));
  }
  return 0.;
}

static double dx (const gchar * name) { return dd (name, FTT_X); }
static double dy (const gchar * name) { return dd (name, FTT_Y); }
static double dx2 (const gchar * name) { return dd2 (name, FTT_X); }
static double dy2 (const gchar * name) { return dd2 (name, FTT_Y); }
#if !FTT_2D
static double dz (const gchar * name) { return dd (name, FTT_Z); }
static double dz2 (const gchar * name) { return dd2 (name, FTT_Z); }
#endif /* 3D */

static double area (const gchar * name)
{
  GfsVariable * v = gfs_variable_from_name (GFS_DOMAIN (_sim)->variables, name);
  if (v == NULL || !GFS_IS_VARIABLE_TRACER_VOF (v))
    return 0.;
  g_return_val_if_fail (_cell != NULL, 0.);
  GfsVariableTracerVOF * t = GFS_VARIABLE_TRACER_VOF (v);
  FttVector m, p;
  FttComponent c;
  for (c = 0; c < FTT_DIMENSION; c++)
    (&m.x)[c] = GFS_VALUE (_cell, t->m[c]);
  return gfs_plane_area_center (&m, GFS_VALUE (_cell, t->alpha), &p)/
    (_sim->physical_params.L*ftt_cell_size (_cell));
}

static double correctness (const gchar * name)
{
  GfsVariable * v = gfs_variable_from_name (GFS_DOMAIN (_sim)->variables, name);
  if (v == NULL || !GFS_IS_VARIABLE_TRACER_VOF (v))
    return 0.;
  g_return_val_if_fail (_cell != NULL, 0.);
  return gfs_vof_correctness (_cell, GFS_VARIABLE_TRACER_VOF (v));
}

static double distance (double xo, double yo, double zo)
{
  /* fixme: this doesn't take mapping into account properly */
  GtsPoint o;
  o.x = xo; o.y = yo; o.z = zo;
  gfs_simulation_map (_sim, (FttVector *) &o.x);
  GtsBBox bb;
  ftt_cell_bbox (_cell, &bb);
  gdouble min, max;
  gts_bbox_point_distance2 (&bb, &o, &min, &max);
  return sqrt (min)*_sim->physical_params.L;
}

static gboolean is_velocity (GfsVariable * v, GfsDomain * domain)
{
  FttComponent c;
  GfsVariable ** u = gfs_domain_velocity (domain);

  for (c = 0; c < FTT_DIMENSION; c++)
    if (v == u[c])
      return TRUE;
  return FALSE;
}

static void dirichlet_bc (FttCell * cell)
{
  cell->flags |= GFS_FLAG_DIRICHLET;
  GFS_STATE (cell)->solid->fv = 0.;
}

static double dsd (const gchar * name, FttComponent c)
{
  g_return_val_if_fail (_cell != NULL, NODATA);
  if (!GFS_IS_MIXED (_cell))
    return NODATA;
  GfsVariable * v = gfs_variable_from_name (GFS_DOMAIN (_sim)->variables, name);
  if (v == NULL)
    return NODATA;
  if (v->surface_bc)
    (* GFS_SURFACE_GENERIC_BC_CLASS (GTS_OBJECT (v->surface_bc)->klass)->bc) (_cell, v->surface_bc);
  else if (is_velocity (v, GFS_DOMAIN (_sim)))
    dirichlet_bc (_cell);
  else /* Neumann */
    return 0.;
  if ((_cell->flags & GFS_FLAG_DIRICHLET) == 0)
    return NODATA;
  FttVector g;
  gfs_cell_dirichlet_gradient (_cell, v->i, -1, GFS_STATE (_cell)->solid->fv, &g);
  return gfs_dimensional_value (v, (&g.x)[c]/(_sim->physical_params.L*ftt_cell_size (_cell)));
}

static double dsx (const gchar * name) { return dsd (name, FTT_X); }
static double dsy (const gchar * name) { return dsd (name, FTT_Y); }
#if !FTT_2D
static double dsz (const gchar * name) { return dsd (name, FTT_Z); }
#endif /* 3D */

static double flux (const gchar * name)
{
  g_return_val_if_fail (_cell != NULL, NODATA);
  if (!GFS_IS_MIXED (_cell))
    return 0.;
  GfsVariable * v = gfs_variable_from_name (GFS_DOMAIN (_sim)->variables, name);
  if (v == NULL)
    return 0.;
  if (v->surface_bc)
    (* GFS_SURFACE_GENERIC_BC_CLASS (GTS_OBJECT (v->surface_bc)->klass)->bc) (_cell, v->surface_bc);
  else if (is_velocity (v, GFS_DOMAIN (_sim)))
    dirichlet_bc (_cell);
  else /* Neumann */
    return 0.;
  gdouble flux;
  if ((_cell->flags & GFS_FLAG_DIRICHLET) == 0)
    flux = GFS_STATE (_cell)->solid->fv;
  else {
    GfsSolidVector * s = GFS_STATE (_cell)->solid;
    FttVector m = {1.,1.,1.};
    gfs_domain_solid_metric (GFS_DOMAIN (_sim), _cell, &m);
    FttComponent c;
    for (c = 0; c < FTT_DIMENSION; c++)
      (&s->v.x)[c] = (&m.x)[c]*(s->s[2*c + 1] - s->s[2*c]);
    flux = gfs_cell_dirichlet_gradient_flux (_cell, v->i, -1, GFS_STATE (_cell)->solid->fv);
  }
  return gfs_dimensional_value (v, flux*pow (_sim->physical_params.L*ftt_cell_size (_cell), 
					     FTT_DIMENSION - 2.));
}

static gboolean overlaps (double x1, double y1, double x2, double y2)
{
  double h = ftt_cell_size (_cell)/2.;
  FttVector p, min = { G_MAXDOUBLE, G_MAXDOUBLE }, max = { -G_MAXDOUBLE, -G_MAXDOUBLE };
  ftt_cell_pos (_cell, &p);
  FttVector q[4];
  q[0] = p; q[0].x += h; q[0].y += h; 
  q[1] = p; q[1].x -= h; q[1].y += h; 
  q[2] = p; q[2].x -= h; q[2].y -= h; 
  q[3] = p; q[3].x += h; q[3].y -= h; 
  gfs_simulation_map_inverse_cell (_sim, q);
  int i;
  for (i = 0; i < 4; i++) {
    if (q[i].x < min.x) min.x = q[i].x;
    if (q[i].y < min.y) min.y = q[i].y;
    if (q[i].x > max.x) max.x = q[i].x;
    if (q[i].y > max.y) max.y = q[i].y;
  }
  return (min.x <= x2 && min.y <= y2 && max.x >= x1 && max.y >= y1);
}

static double mapv (double u, double v, FttComponent c) {
  FttVector p, q = {u, v, 0.};
  g_return_val_if_fail (_cell != NULL, 0.);
  ftt_cell_pos (_cell, &p);
  gfs_simulation_map_inverse_vector (_sim, &p, &q);
  return (&q.x)[c];
}

static double mapvx (double u, double v) { return mapv (u, v, FTT_X); }
static double mapvy (double u, double v) { return mapv (u, v, FTT_Y); }

#endif /* __FUNCTION_H__ */