/usr/include/GeographicLib/Utility.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 | /**
* \file Utility.hpp
* \brief Header for GeographicLib::Utility class
*
* Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_UTILITY_HPP)
#define GEOGRAPHICLIB_UTILITY_HPP 1
#include <GeographicLib/Constants.hpp>
#include <iomanip>
#include <vector>
#include <sstream>
#include <cctype>
#include <ctime>
#if defined(_MSC_VER)
// Squelch warnings about constant conditional expressions and unsafe gmtime
# pragma warning (push)
# pragma warning (disable: 4127 4996)
#endif
namespace GeographicLib {
/**
* \brief Some utility routines for %GeographicLib
*
* Example of use:
* \include example-Utility.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Utility {
private:
static bool gregorian(int y, int m, int d) {
// The original cut over to the Gregorian calendar in Pope Gregory XIII's
// time had 1582-10-04 followed by 1582-10-15. Here we implement the
// switch over used by the English-speaking world where 1752-09-02 was
// followed by 1752-09-14. We also assume that the year always begins
// with January 1, whereas in reality it often was reckoned to begin in
// March.
return 100 * (100 * y + m) + d >= 17520914; // or 15821004
}
static bool gregorian(int s) {
return s >= 639799; // 1752-09-14
}
public:
/**
* Convert a date to the day numbering sequentially starting with
* 0001-01-01 as day 1.
*
* @param[in] y the year (must be positive).
* @param[in] m the month, Jan = 1, etc. (must be positive). Default = 1.
* @param[in] d the day of the month (must be positive). Default = 1.
* @return the sequential day number.
**********************************************************************/
static int day(int y, int m = 1, int d = 1) {
// Convert from date to sequential day and vice versa
//
// Here is some code to convert a date to sequential day and vice
// versa. The sequential day is numbered so that January 1, 1 AD is day 1
// (a Saturday). So this is offset from the "Julian" day which starts the
// numbering with 4713 BC.
//
// This is inspired by a talk by John Conway at the John von Neumann
// National Supercomputer Center when he described his Doomsday algorithm
// for figuring the day of the week. The code avoids explicitly doing ifs
// (except for the decision of whether to use the Julian or Gregorian
// calendar). Instead the equivalent result is achieved using integer
// arithmetic. I got this idea from the routine for the day of the week
// in MACLisp (I believe that that routine was written by Guy Steele).
//
// There are three issues to take care of
//
// 1. the rules for leap years,
// 2. the inconvenient placement of leap days at the end of February,
// 3. the irregular pattern of month lengths.
//
// We deal with these as follows:
//
// 1. Leap years are given by simple rules which are straightforward to
// accommodate.
//
// 2. We simplify the calculations by moving January and February to the
// previous year. Here we internally number the months March–December,
// January, February as 0–9, 10, 11.
//
// 3. The pattern of month lengths from March through January is regular
// with a 5-month period—31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31. The
// 5-month period is 153 days long. Since February is now at the end of
// the year, we don't need to include its length in this part of the
// calculation.
bool greg = gregorian(y, m, d);
y += (m + 9) / 12 - 1; // Move Jan and Feb to previous year,
m = (m + 9) % 12; // making March month 0.
return
(1461 * y) / 4 // Julian years converted to days. Julian year is 365 +
// 1/4 = 1461/4 days.
// Gregorian leap year corrections. The 2 offset with respect to the
// Julian calendar synchronizes the vernal equinox with that at the time
// of the Council of Nicea (325 AD).
+ (greg ? (y / 100) / 4 - (y / 100) + 2 : 0)
+ (153 * m + 2) / 5 // The zero-based start of the m'th month
+ d - 1 // The zero-based day
- 305; // The number of days between March 1 and December 31.
// This makes 0001-01-01 day 1
}
/**
* Convert a date to the day numbering sequentially starting with
* 0001-01-01 as day 1.
*
* @param[in] y the year (must be positive).
* @param[in] m the month, Jan = 1, etc. (must be positive). Default = 1.
* @param[in] d the day of the month (must be positive). Default = 1.
* @param[in] check whether to check the date.
* @exception GeographicErr if the date is invalid and \e check is true.
* @return the sequential day number.
**********************************************************************/
static int day(int y, int m, int d, bool check) {
int s = day(y, m, d);
if (!check)
return s;
int y1, m1, d1;
date(s, y1, m1, d1);
if (!(s > 0 && y == y1 && m == m1 && d == d1))
throw GeographicErr("Invalid date " +
str(y) + "-" + str(m) + "-" + str(d)
+ (s > 0 ? "; use " +
str(y1) + "-" + str(m1) + "-" + str(d1) :
" before 0001-01-01"));
return s;
}
/**
* Given a day (counting from 0001-01-01 as day 1), return the date.
*
* @param[in] s the sequential day number (must be positive)
* @param[out] y the year.
* @param[out] m the month, Jan = 1, etc.
* @param[out] d the day of the month.
**********************************************************************/
static void date(int s, int& y, int& m, int& d) {
int c = 0;
bool greg = gregorian(s);
s += 305; // s = 0 on March 1, 1BC
if (greg) {
s -= 2; // The 2 day Gregorian offset
// Determine century with the Gregorian rules for leap years. The
// Gregorian year is 365 + 1/4 - 1/100 + 1/400 = 146097/400 days.
c = (4 * s + 3) / 146097;
s -= (c * 146097) / 4; // s = 0 at beginning of century
}
y = (4 * s + 3) / 1461; // Determine the year using Julian rules.
s -= (1461 * y) / 4; // s = 0 at start of year, i.e., March 1
y += c * 100; // Assemble full year
m = (5 * s + 2) / 153; // Determine the month
s -= (153 * m + 2) / 5; // s = 0 at beginning of month
d = s + 1; // Determine day of month
y += (m + 2) / 12; // Move Jan and Feb back to original year
m = (m + 2) % 12 + 1; // Renumber the months so January = 1
}
/**
* Given a date as a string in the format yyyy, yyyy-mm, or yyyy-mm-dd,
* return the numeric values for the year, month, and day. No checking is
* done on these values. The string "now" is interpreted as the present
* date (in UTC).
*
* @param[in] s the date in string format.
* @param[out] y the year.
* @param[out] m the month, Jan = 1, etc.
* @param[out] d the day of the month.
* @exception GeographicErr is \e s is malformed.
**********************************************************************/
static void date(const std::string& s, int& y, int& m, int& d) {
if (s == "now") {
std::time_t t = std::time(0);
struct tm* now = gmtime(&t);
y = now->tm_year + 1900;
m = now->tm_mon + 1;
d = now->tm_mday;
return;
}
int y1, m1 = 1, d1 = 1;
const char* digits = "0123456789";
std::string::size_type p1 = s.find_first_not_of(digits);
if (p1 == std::string::npos)
y1 = num<int>(s);
else if (s[p1] != '-')
throw GeographicErr("Delimiter not hyphen in date " + s);
else if (p1 == 0)
throw GeographicErr("Empty year field in date " + s);
else {
y1 = num<int>(s.substr(0, p1));
if (++p1 == s.size())
throw GeographicErr("Empty month field in date " + s);
std::string::size_type p2 = s.find_first_not_of(digits, p1);
if (p2 == std::string::npos)
m1 = num<int>(s.substr(p1));
else if (s[p2] != '-')
throw GeographicErr("Delimiter not hyphen in date " + s);
else if (p2 == p1)
throw GeographicErr("Empty month field in date " + s);
else {
m1 = num<int>(s.substr(p1, p2 - p1));
if (++p2 == s.size())
throw GeographicErr("Empty day field in date " + s);
d1 = num<int>(s.substr(p2));
}
}
y = y1; m = m1; d = d1;
}
/**
* Given the date, return the day of the week.
*
* @param[in] y the year (must be positive).
* @param[in] m the month, Jan = 1, etc. (must be positive).
* @param[in] d the day of the month (must be positive).
* @return the day of the week with Sunday, Monday--Saturday = 0,
* 1--6.
**********************************************************************/
static int dow(int y, int m, int d) { return dow(day(y, m, d)); }
/**
* Given the sequential day, return the day of the week.
*
* @param[in] s the sequential day (must be positive).
* @return the day of the week with Sunday, Monday--Saturday = 0,
* 1--6.
**********************************************************************/
static int dow(int s) {
return (s + 5) % 7; // The 5 offset makes day 1 (0001-01-01) a Saturday.
}
/**
* Convert a string representing a date to a fractional year.
*
* @tparam T the type of the argument.
* @param[in] s the string to be converted.
* @exception GeographicErr if \e s can't be interpreted as a date.
* @return the fractional year.
*
* The string is first read as an ordinary number (e.g., 2010 or 2012.5);
* if this is successful, the value is returned. Otherwise the string
* should be of the form yyyy-mm or yyyy-mm-dd and this is converted to a
* number with 2010-01-01 giving 2010.0 and 2012-07-03 giving 2012.5.
**********************************************************************/
template<typename T> static T fractionalyear(const std::string& s) {
try {
return num<T>(s);
}
catch (const std::exception&) {
}
int y, m, d;
date(s, y, m, d);
int t = day(y, m, d, true);
return T(y) + T(t - day(y)) / T(day(y + 1) - day(y));
}
/**
* Convert a object of type T to a string.
*
* @tparam T the type of the argument.
* @param[in] x the value to be converted.
* @param[in] p the precision used (default −1).
* @exception std::bad_alloc if memory for the string can't be allocated.
* @return the string representation.
*
* If \e p ≥ 0, then the number fixed format is used with p bits of
* precision. With p < 0, there is no manipulation of the format.
**********************************************************************/
template<typename T> static std::string str(T x, int p = -1) {
std::ostringstream s;
if (p >= 0) s << std::fixed << std::setprecision(p);
s << x; return s.str();
}
/**
* Convert a Math::real object to a string.
*
* @param[in] x the value to be converted.
* @param[in] p the precision used (default −1).
* @exception std::bad_alloc if memory for the string can't be allocated.
* @return the string representation.
*
* If \e p ≥ 0, then the number fixed format is used with p bits of
* precision. With p < 0, there is no manipulation of the format. This is
* an overload of str<T> which deals with inf and nan.
**********************************************************************/
static std::string str(Math::real x, int p = -1) {
if (!Math::isfinite(x))
return x < 0 ? std::string("-inf") :
(x > 0 ? std::string("inf") : std::string("nan"));
std::ostringstream s;
#if GEOGRAPHICLIB_PRECISION == 4
// boost-quadmath treats precision == 0 as "use as many digits as
// necessary", so...
using std::floor; using std::fmod;
if (p == 0) {
x += Math::real(0.5);
Math::real ix = floor(x);
// Implement the "round ties to even" rule
x = (ix == x && fmod(ix, Math::real(2)) == 1) ? ix - 1 : ix;
s << std::fixed << std::setprecision(1) << x;
std::string r(s.str());
// strip off trailing ".0"
return r.substr(0, (std::max)(int(r.size()) - 2, 0));
}
#endif
if (p >= 0) s << std::fixed << std::setprecision(p);
s << x; return s.str();
}
/**
* Convert a string to an object of type T.
*
* @tparam T the type of the return value.
* @param[in] s the string to be converted.
* @exception GeographicErr is \e s is not readable as a T.
* @return object of type T
*
* White space at the beginning and end of \e s is ignored.
**********************************************************************/
template<typename T> static T num(const std::string& s) {
T x;
std::string errmsg;
std::string::size_type
beg = 0,
end = unsigned(s.size());
while (beg < end && isspace(s[beg]))
++beg;
while (beg < end && isspace(s[end - 1]))
--end;
std::string t = s.substr(beg, end-beg);
do { // Executed once (provides the ability to break)
std::istringstream is(t);
if (!(is >> x)) {
errmsg = "Cannot decode " + t;
break;
}
int pos = int(is.tellg()); // Returns -1 at end of string?
if (!(pos < 0 || pos == int(t.size()))) {
errmsg = "Extra text " + t.substr(pos) + " at end of " + t;
break;
}
return x;
} while (false);
x = std::numeric_limits<T>::is_integer ? 0 : nummatch<T>(t);
if (x == 0)
throw GeographicErr(errmsg);
return x;
}
/**
* Match "nan" and "inf" (and variants thereof) in a string.
*
* @tparam T the type of the return value.
* @param[in] s the string to be matched.
* @return appropriate special value (±∞, nan) or 0 if none is
* found.
*
* White space is not allowed at the beginning or end of \e s.
**********************************************************************/
template<typename T> static T nummatch(const std::string& s) {
if (s.length() < 3)
return 0;
std::string t;
t.resize(s.length());
std::transform(s.begin(), s.end(), t.begin(), (int(*)(int))std::toupper);
for (size_t i = s.length(); i--;)
t[i] = char(std::toupper(s[i]));
int sign = t[0] == '-' ? -1 : 1;
std::string::size_type p0 = t[0] == '-' || t[0] == '+' ? 1 : 0;
std::string::size_type p1 = t.find_last_not_of('0');
if (p1 == std::string::npos || p1 + 1 < p0 + 3)
return 0;
// Strip off sign and trailing 0s
t = t.substr(p0, p1 + 1 - p0); // Length at least 3
if (t == "NAN" || t == "1.#QNAN" || t == "1.#SNAN" || t == "1.#IND" ||
t == "1.#R")
return Math::NaN<T>();
else if (t == "INF" || t == "1.#INF")
return sign * Math::infinity<T>();
return 0;
}
/**
* Read a simple fraction, e.g., 3/4, from a string to an object of type T.
*
* @tparam T the type of the return value.
* @param[in] s the string to be converted.
* @exception GeographicErr is \e s is not readable as a fraction of type T.
* @return object of type T
*
* <b>NOTE</b>: The msys shell under Windows converts arguments which look
* like pathnames into their Windows equivalents. As a result the argument
* "-1/300" gets mangled into something unrecognizable. A workaround is to
* use a floating point number in the numerator, i.e., "-1.0/300".
**********************************************************************/
template<typename T> static T fract(const std::string& s) {
std::string::size_type delim = s.find('/');
return
!(delim != std::string::npos && delim >= 1 && delim + 2 <= s.size()) ?
num<T>(s) :
// delim in [1, size() - 2]
num<T>(s.substr(0, delim)) / num<T>(s.substr(delim + 1));
}
/**
* Lookup up a character in a string.
*
* @param[in] s the string to be searched.
* @param[in] c the character to look for.
* @return the index of the first occurrence character in the string or
* −1 is the character is not present.
*
* \e c is converted to upper case before search \e s. Therefore, it is
* intended that \e s should not contain any lower case letters.
**********************************************************************/
static int lookup(const std::string& s, char c) {
std::string::size_type r = s.find(char(toupper(c)));
return r == std::string::npos ? -1 : int(r);
}
/**
* Read data of type ExtT from a binary stream to an array of type IntT.
* The data in the file is in (bigendp ? big : little)-endian format.
*
* @tparam ExtT the type of the objects in the binary stream (external).
* @tparam IntT the type of the objects in the array (internal).
* @tparam bigendp true if the external storage format is big-endian.
* @param[in] str the input stream containing the data of type ExtT
* (external).
* @param[out] array the output array of type IntT (internal).
* @param[in] num the size of the array.
* @exception GeographicErr if the data cannot be read.
**********************************************************************/
template<typename ExtT, typename IntT, bool bigendp>
static inline void readarray(std::istream& str,
IntT array[], size_t num) {
#if GEOGRAPHICLIB_PRECISION < 4
if (sizeof(IntT) == sizeof(ExtT) &&
std::numeric_limits<IntT>::is_integer ==
std::numeric_limits<ExtT>::is_integer)
{
// Data is compatible (aside from the issue of endian-ness).
str.read(reinterpret_cast<char*>(array), num * sizeof(ExtT));
if (!str.good())
throw GeographicErr("Failure reading data");
if (bigendp != Math::bigendian) { // endian mismatch -> swap bytes
for (size_t i = num; i--;)
array[i] = Math::swab<IntT>(array[i]);
}
}
else
#endif
{
const int bufsize = 1024; // read this many values at a time
ExtT buffer[bufsize]; // temporary buffer
int k = int(num); // data values left to read
int i = 0; // index into output array
while (k) {
int n = (std::min)(k, bufsize);
str.read(reinterpret_cast<char*>(buffer), n * sizeof(ExtT));
if (!str.good())
throw GeographicErr("Failure reading data");
for (int j = 0; j < n; ++j)
// fix endian-ness and cast to IntT
array[i++] = IntT(bigendp == Math::bigendian ? buffer[j] :
Math::swab<ExtT>(buffer[j]));
k -= n;
}
}
return;
}
/**
* Read data of type ExtT from a binary stream to a vector array of type
* IntT. The data in the file is in (bigendp ? big : little)-endian
* format.
*
* @tparam ExtT the type of the objects in the binary stream (external).
* @tparam IntT the type of the objects in the array (internal).
* @tparam bigendp true if the external storage format is big-endian.
* @param[in] str the input stream containing the data of type ExtT
* (external).
* @param[out] array the output vector of type IntT (internal).
* @exception GeographicErr if the data cannot be read.
**********************************************************************/
template<typename ExtT, typename IntT, bool bigendp>
static inline void readarray(std::istream& str,
std::vector<IntT>& array) {
if (array.size() > 0)
readarray<ExtT, IntT, bigendp>(str, &array[0], array.size());
}
/**
* Write data in an array of type IntT as type ExtT to a binary stream.
* The data in the file is in (bigendp ? big : little)-endian format.
*
* @tparam ExtT the type of the objects in the binary stream (external).
* @tparam IntT the type of the objects in the array (internal).
* @tparam bigendp true if the external storage format is big-endian.
* @param[out] str the output stream for the data of type ExtT (external).
* @param[in] array the input array of type IntT (internal).
* @param[in] num the size of the array.
* @exception GeographicErr if the data cannot be written.
**********************************************************************/
template<typename ExtT, typename IntT, bool bigendp>
static inline void writearray(std::ostream& str,
const IntT array[], size_t num) {
#if GEOGRAPHICLIB_PRECISION < 4
if (sizeof(IntT) == sizeof(ExtT) &&
std::numeric_limits<IntT>::is_integer ==
std::numeric_limits<ExtT>::is_integer &&
bigendp == Math::bigendian)
{
// Data is compatible (including endian-ness).
str.write(reinterpret_cast<const char*>(array), num * sizeof(ExtT));
if (!str.good())
throw GeographicErr("Failure writing data");
}
else
#endif
{
const int bufsize = 1024; // write this many values at a time
ExtT buffer[bufsize]; // temporary buffer
int k = int(num); // data values left to write
int i = 0; // index into output array
while (k) {
int n = (std::min)(k, bufsize);
for (int j = 0; j < n; ++j)
// cast to ExtT and fix endian-ness
buffer[j] = bigendp == Math::bigendian ? ExtT(array[i++]) :
Math::swab<ExtT>(ExtT(array[i++]));
str.write(reinterpret_cast<const char*>(buffer), n * sizeof(ExtT));
if (!str.good())
throw GeographicErr("Failure writing data");
k -= n;
}
}
return;
}
/**
* Write data in an array of type IntT as type ExtT to a binary stream.
* The data in the file is in (bigendp ? big : little)-endian format.
*
* @tparam ExtT the type of the objects in the binary stream (external).
* @tparam IntT the type of the objects in the array (internal).
* @tparam bigendp true if the external storage format is big-endian.
* @param[out] str the output stream for the data of type ExtT (external).
* @param[in] array the input vector of type IntT (internal).
* @exception GeographicErr if the data cannot be written.
**********************************************************************/
template<typename ExtT, typename IntT, bool bigendp>
static inline void writearray(std::ostream& str,
std::vector<IntT>& array) {
if (array.size() > 0)
writearray<ExtT, IntT, bigendp>(str, &array[0], array.size());
}
/**
* Parse a KEY VALUE line.
*
* @param[in] line the input line.
* @param[out] key the key.
* @param[out] val the value.
* @exception std::bad_alloc if memory for the internal strings can't be
* allocated.
* @return whether a key was found.
*
* A # character and everything after it are discarded. If the result is
* just white space, the routine returns false (and \e key and \e val are
* not set). Otherwise the first token is taken to be the key and the rest
* of the line (trimmed of leading and trailing white space) is the value.
**********************************************************************/
static bool ParseLine(const std::string& line,
std::string& key, std::string& val);
/**
* Set the binary precision of a real number.
*
* @param[in] ndigits the number of bits of precision. If ndigits is 0
* (the default), then determine the precision from the environment
* variable GEOGRAPHICLIB_DIGITS. If this is undefined, use ndigits =
* 256 (i.e., about 77 decimal digits).
* @return the resulting number of bits of precision.
*
* This only has an effect when GEOGRAPHICLIB_PRECISION == 5. The
* precision should only be set once and before calls to any other
* GeographicLib functions. (Several functions, for example Math::pi(),
* cache the return value in a static local variable. The precision needs
* to be set before a call to any such functions.) In multi-threaded
* applications, it is necessary also to set the precision in each thread
* (see the example GeoidToGTX.cpp).
**********************************************************************/
static int set_digits(int ndigits = 0);
};
} // namespace GeographicLib
#if defined(_MSC_VER)
# pragma warning (pop)
#endif
#endif // GEOGRAPHICLIB_UTILITY_HPP
|