/usr/include/GeographicLib/TransverseMercatorExact.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | /**
* \file TransverseMercatorExact.hpp
* \brief Header for GeographicLib::TransverseMercatorExact class
*
* Copyright (c) Charles Karney (2008-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP)
#define GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP 1
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/EllipticFunction.hpp>
namespace GeographicLib {
/**
* \brief An exact implementation of the transverse Mercator projection
*
* Implementation of the Transverse Mercator Projection given in
* - L. P. Lee,
* <a href="https://dx.doi.org/10.3138/X687-1574-4325-WM62"> Conformal
* Projections Based On Jacobian Elliptic Functions</a>, Part V of
* Conformal Projections Based on Elliptic Functions,
* (B. V. Gutsell, Toronto, 1976), 128pp.,
* ISBN: 0919870163
* (also appeared as:
* Monograph 16, Suppl. No. 1 to Canadian Cartographer, Vol 13).
* - C. F. F. Karney,
* <a href="https://dx.doi.org/10.1007/s00190-011-0445-3">
* Transverse Mercator with an accuracy of a few nanometers,</a>
* J. Geodesy 85(8), 475--485 (Aug. 2011);
* preprint
* <a href="http://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>.
*
* Lee gives the correct results for forward and reverse transformations
* subject to the branch cut rules (see the description of the \e extendp
* argument to the constructor). The maximum error is about 8 nm (8
* nanometers), ground distance, for the forward and reverse transformations.
* The error in the convergence is 2 × 10<sup>−15</sup>",
* the relative error in the scale is 7 × 10<sup>−12</sup>%%.
* See Sec. 3 of
* <a href="http://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for details.
* The method is "exact" in the sense that the errors are close to the
* round-off limit and that no changes are needed in the algorithms for them
* to be used with reals of a higher precision. Thus the errors using long
* double (with a 64-bit fraction) are about 2000 times smaller than using
* double (with a 53-bit fraction).
*
* This algorithm is about 4.5 times slower than the 6th-order Krüger
* method, TransverseMercator, taking about 11 us for a combined forward and
* reverse projection on a 2.66 GHz Intel machine (g++, version 4.3.0, -O3).
*
* The ellipsoid parameters and the central scale are set in the constructor.
* The central meridian (which is a trivial shift of the longitude) is
* specified as the \e lon0 argument of the TransverseMercatorExact::Forward
* and TransverseMercatorExact::Reverse functions. The latitude of origin is
* taken to be the equator. See the documentation on TransverseMercator for
* how to include a false easting, false northing, or a latitude of origin.
*
* See <a href="http://geographiclib.sourceforge.net/tm-grid.kmz"
* type="application/vnd.google-earth.kmz"> tm-grid.kmz</a>, for an
* illustration of the transverse Mercator grid in Google Earth.
*
* See TransverseMercatorExact.cpp for more information on the
* implementation.
*
* See \ref transversemercator for a discussion of this projection.
*
* Example of use:
* \include example-TransverseMercatorExact.cpp
*
* <a href="TransverseMercatorProj.1.html">TransverseMercatorProj</a> is a
* command-line utility providing access to the functionality of
* TransverseMercator and TransverseMercatorExact.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT TransverseMercatorExact {
private:
typedef Math::real real;
static const int numit_ = 10;
real tol_, tol1_, tol2_, taytol_;
real _a, _f, _k0, _mu, _mv, _e;
bool _extendp;
EllipticFunction _Eu, _Ev;
void zeta(real u, real snu, real cnu, real dnu,
real v, real snv, real cnv, real dnv,
real& taup, real& lam) const;
void dwdzeta(real u, real snu, real cnu, real dnu,
real v, real snv, real cnv, real dnv,
real& du, real& dv) const;
bool zetainv0(real psi, real lam, real& u, real& v) const;
void zetainv(real taup, real lam, real& u, real& v) const;
void sigma(real u, real snu, real cnu, real dnu,
real v, real snv, real cnv, real dnv,
real& xi, real& eta) const;
void dwdsigma(real u, real snu, real cnu, real dnu,
real v, real snv, real cnv, real dnv,
real& du, real& dv) const;
bool sigmainv0(real xi, real eta, real& u, real& v) const;
void sigmainv(real xi, real eta, real& u, real& v) const;
void Scale(real tau, real lam,
real snu, real cnu, real dnu,
real snv, real cnv, real dnv,
real& gamma, real& k) const;
public:
/**
* Constructor for a ellipsoid with
*
* @param[in] a equatorial radius (meters).
* @param[in] f flattening of ellipsoid.
* @param[in] k0 central scale factor.
* @param[in] extendp use extended domain.
* @exception GeographicErr if \e a, \e f, or \e k0 is not positive.
*
* The transverse Mercator projection has a branch point singularity at \e
* lat = 0 and \e lon − \e lon0 = 90 (1 − \e e) or (for
* TransverseMercatorExact::UTM) x = 18381 km, y = 0m. The \e extendp
* argument governs where the branch cut is placed. With \e extendp =
* false, the "standard" convention is followed, namely the cut is placed
* along \e x > 18381 km, \e y = 0m. Forward can be called with any \e lat
* and \e lon then produces the transformation shown in Lee, Fig 46.
* Reverse analytically continues this in the ± \e x direction. As
* a consequence, Reverse may map multiple points to the same geographic
* location; for example, for TransverseMercatorExact::UTM, \e x =
* 22051449.037349 m, \e y = −7131237.022729 m and \e x =
* 29735142.378357 m, \e y = 4235043.607933 m both map to \e lat =
* −2°, \e lon = 88°.
*
* With \e extendp = true, the branch cut is moved to the lower left
* quadrant. The various symmetries of the transverse Mercator projection
* can be used to explore the projection on any sheet. In this mode the
* domains of \e lat, \e lon, \e x, and \e y are restricted to
* - the union of
* - \e lat in [0, 90] and \e lon − \e lon0 in [0, 90]
* - \e lat in (-90, 0] and \e lon − \e lon0 in [90 (1 − \e
e), 90]
* - the union of
* - <i>x</i>/(\e k0 \e a) in [0, ∞) and
* <i>y</i>/(\e k0 \e a) in [0, E(<i>e</i><sup>2</sup>)]
* - <i>x</i>/(\e k0 \e a) in [K(1 − <i>e</i><sup>2</sup>) −
* E(1 − <i>e</i><sup>2</sup>), ∞) and <i>y</i>/(\e k0 \e
* a) in (−∞, 0]
* .
* See Sec. 5 of
* <a href="http://arxiv.org/abs/1002.1417">arXiv:1002.1417</a> for a full
* discussion of the treatment of the branch cut.
*
* The method will work for all ellipsoids used in terrestrial geodesy.
* The method cannot be applied directly to the case of a sphere (\e f = 0)
* because some the constants characterizing this method diverge in that
* limit, and in practice, \e f should be larger than about
* numeric_limits<real>::epsilon(). However, TransverseMercator treats the
* sphere exactly.
**********************************************************************/
TransverseMercatorExact(real a, real f, real k0, bool extendp = false);
/**
* Forward projection, from geographic to transverse Mercator.
*
* @param[in] lon0 central meridian of the projection (degrees).
* @param[in] lat latitude of point (degrees).
* @param[in] lon longitude of point (degrees).
* @param[out] x easting of point (meters).
* @param[out] y northing of point (meters).
* @param[out] gamma meridian convergence at point (degrees).
* @param[out] k scale of projection at point.
*
* No false easting or northing is added. \e lat should be in the range
* [−90°, 90°].
**********************************************************************/
void Forward(real lon0, real lat, real lon,
real& x, real& y, real& gamma, real& k) const;
/**
* Reverse projection, from transverse Mercator to geographic.
*
* @param[in] lon0 central meridian of the projection (degrees).
* @param[in] x easting of point (meters).
* @param[in] y northing of point (meters).
* @param[out] lat latitude of point (degrees).
* @param[out] lon longitude of point (degrees).
* @param[out] gamma meridian convergence at point (degrees).
* @param[out] k scale of projection at point.
*
* No false easting or northing is added. The value of \e lon returned is
* in the range [−180°, 180°).
**********************************************************************/
void Reverse(real lon0, real x, real y,
real& lat, real& lon, real& gamma, real& k) const;
/**
* TransverseMercatorExact::Forward without returning the convergence and
* scale.
**********************************************************************/
void Forward(real lon0, real lat, real lon,
real& x, real& y) const {
real gamma, k;
Forward(lon0, lat, lon, x, y, gamma, k);
}
/**
* TransverseMercatorExact::Reverse without returning the convergence and
* scale.
**********************************************************************/
void Reverse(real lon0, real x, real y,
real& lat, real& lon) const {
real gamma, k;
Reverse(lon0, x, y, lat, lon, gamma, k);
}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
Math::real MajorRadius() const { return _a; }
/**
* @return \e f the flattening of the ellipsoid. This is the value used in
* the constructor.
**********************************************************************/
Math::real Flattening() const { return _f; }
/// \cond SKIP
/**
* <b>DEPRECATED</b>
* @return \e r the inverse flattening of the ellipsoid.
**********************************************************************/
Math::real InverseFlattening() const { return 1/_f; }
/// \endcond
/**
* @return \e k0 central scale for the projection. This is the value of \e
* k0 used in the constructor and is the scale on the central meridian.
**********************************************************************/
Math::real CentralScale() const { return _k0; }
///@}
/**
* A global instantiation of TransverseMercatorExact with the WGS84
* ellipsoid and the UTM scale factor. However, unlike UTM, no false
* easting or northing is added.
**********************************************************************/
static const TransverseMercatorExact& UTM();
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_TRANSVERSEMERCATOREXACT_HPP
|