/usr/include/GeographicLib/Rhumb.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | /**
* \file Rhumb.hpp
* \brief Header for GeographicLib::Rhumb and GeographicLib::RhumbLine classes
*
* Copyright (c) Charles Karney (2014-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_RHUMB_HPP)
#define GEOGRAPHICLIB_RHUMB_HPP 1
#include <GeographicLib/Constants.hpp>
#include <GeographicLib/Ellipsoid.hpp>
#if !defined(GEOGRAPHICLIB_RHUMBAREA_ORDER)
/**
* The order of the series approximation used in rhumb area calculations.
* GEOGRAPHICLIB_RHUMBAREA_ORDER can be set to any integer in [4, 8].
**********************************************************************/
# define GEOGRAPHICLIB_RHUMBAREA_ORDER \
(GEOGRAPHICLIB_PRECISION == 2 ? 6 : \
(GEOGRAPHICLIB_PRECISION == 1 ? 4 : 8))
#endif
namespace GeographicLib {
class RhumbLine;
template <class T> class PolygonAreaT;
/**
* \brief Solve of the direct and inverse rhumb problems.
*
* The path of constant azimuth between two points on a ellipsoid at (\e
* lat1, \e lon1) and (\e lat2, \e lon2) is called the rhumb line (also
* called the loxodrome). Its length is \e s12 and its azimuth is \e azi12.
* (The azimuth is the heading measured clockwise from north.)
*
* Given \e lat1, \e lon1, \e azi12, and \e s12, we can determine \e lat2,
* and \e lon2. This is the \e direct rhumb problem and its solution is
* given by the function Rhumb::Direct.
*
* Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi12
* and \e s12. This is the \e inverse rhumb problem, whose solution is given
* by Rhumb::Inverse. This finds the shortest such rhumb line, i.e., the one
* that wraps no more than half way around the earth. If the end points are
* on opposite meridians, there are two shortest rhumb lines and the
* east-going one is chosen.
*
* These routines also optionally calculate the area under the rhumb line, \e
* S12. This is the area, measured counter-clockwise, of the rhumb line
* quadrilateral with corners (<i>lat1</i>,<i>lon1</i>), (0,<i>lon1</i>),
* (0,<i>lon2</i>), and (<i>lat2</i>,<i>lon2</i>).
*
* Note that rhumb lines may be appreciably longer (up to 50%) than the
* corresponding Geodesic. For example the distance between London Heathrow
* and Tokyo Narita via the rhumb line is 11400 km which is 18% longer than
* the geodesic distance 9600 km.
*
* For more information on rhumb lines see \ref rhumb.
*
* Example of use:
* \include example-Rhumb.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Rhumb {
private:
typedef Math::real real;
friend class RhumbLine;
template <class T> friend class PolygonAreaT;
Ellipsoid _ell;
bool _exact;
real _c2;
static const int tm_maxord = GEOGRAPHICLIB_TRANSVERSEMERCATOR_ORDER;
static const int maxpow_ = GEOGRAPHICLIB_RHUMBAREA_ORDER;
// _R[0] unused
real _R[maxpow_ + 1];
static inline real gd(real x)
{ using std::atan; using std::sinh; return atan(sinh(x)); }
// Use divided differences to determine (mu2 - mu1) / (psi2 - psi1)
// accurately
//
// Definition: Df(x,y,d) = (f(x) - f(y)) / (x - y)
// See:
// W. M. Kahan and R. J. Fateman,
// Symbolic computation of divided differences,
// SIGSAM Bull. 33(3), 7-28 (1999)
// https://dx.doi.org/10.1145/334714.334716
// http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf
static inline real Dlog(real x, real y) {
real t = x - y;
return t ? 2 * Math::atanh(t / (x + y)) / t : 1 / x;
}
// N.B., x and y are in degrees
static inline real Dtan(real x, real y) {
real d = x - y, tx = Math::tand(x), ty = Math::tand(y), txy = tx * ty;
return d ?
(2 * txy > -1 ? (1 + txy) * Math::tand(d) : tx - ty) /
(d * Math::degree()) :
1 + txy;
}
static inline real Datan(real x, real y) {
using std::atan;
real d = x - y, xy = x * y;
return d ? (2 * xy > -1 ? atan( d / (1 + xy) ) : atan(x) - atan(y)) / d :
1 / (1 + xy);
}
static inline real Dsin(real x, real y) {
using std::sin; using std::cos;
real d = (x - y) / 2;
return cos((x + y)/2) * (d ? sin(d) / d : 1);
}
static inline real Dsinh(real x, real y) {
using std::sinh; using std::cosh;
real d = (x - y) / 2;
return cosh((x + y) / 2) * (d ? sinh(d) / d : 1);
}
static inline real Dcosh(real x, real y) {
using std::sinh;
real d = (x - y) / 2;
return sinh((x + y) / 2) * (d ? sinh(d) / d : 1);
}
static inline real Dasinh(real x, real y) {
real d = x - y,
hx = Math::hypot(real(1), x), hy = Math::hypot(real(1), y);
return d ? Math::asinh(x*y > 0 ? d * (x + y) / (x*hy + y*hx) :
x*hy - y*hx) / d :
1 / hx;
}
static inline real Dgd(real x, real y) {
using std::sinh;
return Datan(sinh(x), sinh(y)) * Dsinh(x, y);
}
// N.B., x and y are the tangents of the angles
static inline real Dgdinv(real x, real y)
{ return Dasinh(x, y) / Datan(x, y); }
// Copied from LambertConformalConic...
// Deatanhe(x,y) = eatanhe((x-y)/(1-e^2*x*y))/(x-y)
inline real Deatanhe(real x, real y) const {
real t = x - y, d = 1 - _ell._e2 * x * y;
return t ? Math::eatanhe(t / d, _ell._es) / t : _ell._e2 / d;
}
// (E(x) - E(y)) / (x - y) -- E = incomplete elliptic integral of 2nd kind
real DE(real x, real y) const;
// (mux - muy) / (phix - phiy) using elliptic integrals
real DRectifying(real latx, real laty) const;
// (psix - psiy) / (phix - phiy)
real DIsometric(real latx, real laty) const;
// (sum(c[j]*sin(2*j*x),j=1..n) - sum(c[j]*sin(2*j*x),j=1..n)) / (x - y)
static real SinCosSeries(bool sinp,
real x, real y, const real c[], int n);
// (mux - muy) / (chix - chiy) using Krueger's series
real DConformalToRectifying(real chix, real chiy) const;
// (chix - chiy) / (mux - muy) using Krueger's series
real DRectifyingToConformal(real mux, real muy) const;
// (mux - muy) / (psix - psiy)
// N.B., psix and psiy are in degrees
real DIsometricToRectifying(real psix, real psiy) const;
// (psix - psiy) / (mux - muy)
real DRectifyingToIsometric(real mux, real muy) const;
real MeanSinXi(real psi1, real psi2) const;
// The following two functions (with lots of ignored arguments) mimic the
// interface to the corresponding Geodesic function. These are needed by
// PolygonAreaT.
void GenDirect(real lat1, real lon1, real azi12,
bool, real s12, unsigned outmask,
real& lat2, real& lon2, real&, real&, real&, real&, real&,
real& S12) const {
GenDirect(lat1, lon1, azi12, s12, outmask, lat2, lon2, S12);
}
void GenInverse(real lat1, real lon1, real lat2, real lon2,
unsigned outmask, real& s12, real& azi12,
real&, real& , real& , real& , real& S12) const {
GenInverse(lat1, lon1, lat2, lon2, outmask, s12, azi12, S12);
}
public:
/**
* Bit masks for what calculations to do. They specify which results to
* return in the general routines Rhumb::GenDirect and Rhumb::GenInverse
* routines. RhumbLine::mask is a duplication of this enum.
**********************************************************************/
enum mask {
/**
* No output.
* @hideinitializer
**********************************************************************/
NONE = 0U,
/**
* Calculate latitude \e lat2.
* @hideinitializer
**********************************************************************/
LATITUDE = 1U<<7,
/**
* Calculate longitude \e lon2.
* @hideinitializer
**********************************************************************/
LONGITUDE = 1U<<8,
/**
* Calculate azimuth \e azi12.
* @hideinitializer
**********************************************************************/
AZIMUTH = 1U<<9,
/**
* Calculate distance \e s12.
* @hideinitializer
**********************************************************************/
DISTANCE = 1U<<10,
/**
* Calculate area \e S12.
* @hideinitializer
**********************************************************************/
AREA = 1U<<14,
/**
* Unroll \e lon2 in the direct calculation. (This flag used to be
* called LONG_NOWRAP.)
* @hideinitializer
**********************************************************************/
LONG_UNROLL = 1U<<15,
/// \cond SKIP
LONG_NOWRAP = LONG_UNROLL,
/// \endcond
/**
* Calculate everything. (LONG_UNROLL is not included in this mask.)
* @hideinitializer
**********************************************************************/
ALL = 0x7F80U,
};
/**
* Constructor for a ellipsoid with
*
* @param[in] a equatorial radius (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @param[in] exact if true (the default) use an addition theorem for
* elliptic integrals to compute divided differences; otherwise use
* series expansion (accurate for |<i>f</i>| < 0.01).
* @exception GeographicErr if \e a or (1 − \e f) \e a is not
* positive.
*
* See \ref rhumb, for a detailed description of the \e exact parameter.
**********************************************************************/
Rhumb(real a, real f, bool exact = true);
/**
* Solve the direct rhumb problem returning also the area.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi12 azimuth of the rhumb line (degrees).
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* negative.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
*
* \e lat1 should be in the range [−90°, 90°]. The value of
* \e lon2 returned is in the range [−180°, 180°).
*
* If point 1 is a pole, the cosine of its latitude is taken to be
* 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
* position, which is extremely close to the actual pole, allows the
* calculation to be carried out in finite terms. If \e s12 is large
* enough that the rhumb line crosses a pole, the longitude of point 2
* is indeterminate (a NaN is returned for \e lon2 and \e S12).
**********************************************************************/
void Direct(real lat1, real lon1, real azi12, real s12,
real& lat2, real& lon2, real& S12) const {
GenDirect(lat1, lon1, azi12, s12,
LATITUDE | LONGITUDE | AREA, lat2, lon2, S12);
}
/**
* Solve the direct rhumb problem without the area.
**********************************************************************/
void Direct(real lat1, real lon1, real azi12, real s12,
real& lat2, real& lon2) const {
real t;
GenDirect(lat1, lon1, azi12, s12, LATITUDE | LONGITUDE, lat2, lon2, t);
}
/**
* The general direct rhumb problem. Rhumb::Direct is defined in terms
* of this function.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi12 azimuth of the rhumb line (degrees).
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* negative.
* @param[in] outmask a bitor'ed combination of Rhumb::mask values
* specifying which of the following parameters should be set.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
*
* The Rhumb::mask values possible for \e outmask are
* - \e outmask |= Rhumb::LATITUDE for the latitude \e lat2;
* - \e outmask |= Rhumb::LONGITUDE for the latitude \e lon2;
* - \e outmask |= Rhumb::AREA for the area \e S12;
* - \e outmask |= Rhumb::ALL for all of the above;
* - \e outmask |= Rhumb::LONG_UNROLL to unroll \e lon2 instead of wrapping
* it into the range [−180°, 180°).
* .
* With the Rhumb::LONG_UNROLL bit set, the quantity \e lon2 −
* \e lon1 indicates how many times and in what sense the rhumb line
* encircles the ellipsoid.
**********************************************************************/
void GenDirect(real lat1, real lon1, real azi12, real s12, unsigned outmask,
real& lat2, real& lon2, real& S12) const;
/**
* Solve the inverse rhumb problem returning also the area.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] lat2 latitude of point 2 (degrees).
* @param[in] lon2 longitude of point 2 (degrees).
* @param[out] s12 rhumb distance between point 1 and point 2 (meters).
* @param[out] azi12 azimuth of the rhumb line (degrees).
* @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
*
* The shortest rhumb line is found. If the end points are on opposite
* meridians, there are two shortest rhumb lines and the east-going one is
* chosen. \e lat1 and \e lat2 should be in the range [−90°,
* 90°]. The value of \e azi12 returned is in the range
* [−180°, 180°).
*
* If either point is a pole, the cosine of its latitude is taken to be
* 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
* position, which is extremely close to the actual pole, allows the
* calculation to be carried out in finite terms.
**********************************************************************/
void Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi12, real& S12) const {
GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH | AREA, s12, azi12, S12);
}
/**
* Solve the inverse rhumb problem without the area.
**********************************************************************/
void Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi12) const {
real t;
GenInverse(lat1, lon1, lat2, lon2, DISTANCE | AZIMUTH, s12, azi12, t);
}
/**
* The general inverse rhumb problem. Rhumb::Inverse is defined in terms
* of this function.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] lat2 latitude of point 2 (degrees).
* @param[in] lon2 longitude of point 2 (degrees).
* @param[in] outmask a bitor'ed combination of Rhumb::mask values
* specifying which of the following parameters should be set.
* @param[out] s12 rhumb distance between point 1 and point 2 (meters).
* @param[out] azi12 azimuth of the rhumb line (degrees).
* @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
*
* The Rhumb::mask values possible for \e outmask are
* - \e outmask |= Rhumb::DISTANCE for the latitude \e s12;
* - \e outmask |= Rhumb::AZIMUTH for the latitude \e azi12;
* - \e outmask |= Rhumb::AREA for the area \e S12;
* - \e outmask |= Rhumb::ALL for all of the above;
**********************************************************************/
void GenInverse(real lat1, real lon1, real lat2, real lon2,
unsigned outmask,
real& s12, real& azi12, real& S12) const;
/**
* Set up to compute several points on a single rhumb line.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi12 azimuth of the rhumb line (degrees).
* @return a RhumbLine object.
*
* \e lat1 should be in the range [−90°, 90°].
*
* If point 1 is a pole, the cosine of its latitude is taken to be
* 1/ε<sup>2</sup> (where ε is 2<sup>-52</sup>). This
* position, which is extremely close to the actual pole, allows the
* calculation to be carried out in finite terms.
**********************************************************************/
RhumbLine Line(real lat1, real lon1, real azi12) const;
/** \name Inspector functions.
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
Math::real MajorRadius() const { return _ell.MajorRadius(); }
/**
* @return \e f the flattening of the ellipsoid. This is the
* value used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _ell.Flattening(); }
Math::real EllipsoidArea() const { return _ell.Area(); }
/**
* A global instantiation of Rhumb with the parameters for the WGS84
* ellipsoid.
**********************************************************************/
static const Rhumb& WGS84();
};
/**
* \brief Find a sequence of points on a single rhumb line.
*
* RhumbLine facilitates the determination of a series of points on a single
* rhumb line. The starting point (\e lat1, \e lon1) and the azimuth \e
* azi12 are specified in the call to Rhumb::Line which returns a RhumbLine
* object. RhumbLine.Position returns the location of point 2 (and,
* optionally, the corresponding area, \e S12) a distance \e s12 along the
* rhumb line.
*
* There is no public constructor for this class. (Use Rhumb::Line to create
* an instance.) The Rhumb object used to create a RhumbLine must stay in
* scope as long as the RhumbLine.
*
* Example of use:
* \include example-RhumbLine.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT RhumbLine {
private:
typedef Math::real real;
friend class Rhumb;
const Rhumb& _rh;
bool _exact;
real _lat1, _lon1, _azi12, _salp, _calp, _mu1, _psi1, _r1;
RhumbLine& operator=(const RhumbLine&); // copy assignment not allowed
RhumbLine(const Rhumb& rh, real lat1, real lon1, real azi12,
bool exact);
public:
/**
* This is a duplication of Rhumb::mask.
**********************************************************************/
enum mask {
/**
* No output.
* @hideinitializer
**********************************************************************/
NONE = Rhumb::NONE,
/**
* Calculate latitude \e lat2.
* @hideinitializer
**********************************************************************/
LATITUDE = Rhumb::LATITUDE,
/**
* Calculate longitude \e lon2.
* @hideinitializer
**********************************************************************/
LONGITUDE = Rhumb::LONGITUDE,
/**
* Calculate azimuth \e azi12.
* @hideinitializer
**********************************************************************/
AZIMUTH = Rhumb::AZIMUTH,
/**
* Calculate distance \e s12.
* @hideinitializer
**********************************************************************/
DISTANCE = Rhumb::DISTANCE,
/**
* Calculate area \e S12.
* @hideinitializer
**********************************************************************/
AREA = Rhumb::AREA,
/**
* Unroll \e lon2 in the direct calculation. (This flag used to be
* called LONG_NOWRAP.)
* @hideinitializer
**********************************************************************/
LONG_UNROLL = Rhumb::LONG_UNROLL,
/// \cond SKIP
LONG_NOWRAP = LONG_UNROLL,
/// \endcond
/**
* Calculate everything. (LONG_UNROLL is not included in this mask.)
* @hideinitializer
**********************************************************************/
ALL = Rhumb::ALL,
};
/**
* Compute the position of point 2 which is a distance \e s12 (meters) from
* point 1. The area is also computed.
*
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* negative.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
*
* The value of \e lon2 returned is in the range [−180°,
* 180°).
*
* If \e s12 is large enough that the rhumb line crosses a pole, the
* longitude of point 2 is indeterminate (a NaN is returned for \e lon2 and
* \e S12).
**********************************************************************/
void Position(real s12, real& lat2, real& lon2, real& S12) const {
GenPosition(s12, LATITUDE | LONGITUDE | AREA, lat2, lon2, S12);
}
/**
* Compute the position of point 2 which is a distance \e s12 (meters) from
* point 1. The area is not computed.
**********************************************************************/
void Position(real s12, real& lat2, real& lon2) const {
real t;
GenPosition(s12, LATITUDE | LONGITUDE, lat2, lon2, t);
}
/**
* The general position routine. RhumbLine::Position is defined in term so
* this function.
*
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* negative.
* @param[in] outmask a bitor'ed combination of RhumbLine::mask values
* specifying which of the following parameters should be set.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] S12 area under the rhumb line (meters<sup>2</sup>).
*
* The RhumbLine::mask values possible for \e outmask are
* - \e outmask |= RhumbLine::LATITUDE for the latitude \e lat2;
* - \e outmask |= RhumbLine::LONGITUDE for the latitude \e lon2;
* - \e outmask |= RhumbLine::AREA for the area \e S12;
* - \e outmask |= RhumbLine::ALL for all of the above;
* - \e outmask |= RhumbLine::LONG_UNROLL to unroll \e lon2 instead of
* wrapping it into the range [−180°, 180°).
* .
* With the RhumbLine::LONG_UNROLL bit set, the quantity \e lon2 − \e
* lon1 indicates how many times and in what sense the rhumb line encircles
* the ellipsoid.
*
* If \e s12 is large enough that the rhumb line crosses a pole, the
* longitude of point 2 is indeterminate (a NaN is returned for \e lon2 and
* \e S12).
**********************************************************************/
void GenPosition(real s12, unsigned outmask,
real& lat2, real& lon2, real& S12) const;
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return \e lat1 the latitude of point 1 (degrees).
**********************************************************************/
Math::real Latitude() const { return _lat1; }
/**
* @return \e lon1 the longitude of point 1 (degrees).
**********************************************************************/
Math::real Longitude() const { return _lon1; }
/**
* @return \e azi12 the azimuth of the rhumb line (degrees).
**********************************************************************/
Math::real Azimuth() const { return _azi12; }
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value inherited from the Rhumb object used in the constructor.
**********************************************************************/
Math::real MajorRadius() const { return _rh.MajorRadius(); }
/**
* @return \e f the flattening of the ellipsoid. This is the value
* inherited from the Rhumb object used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _rh.Flattening(); }
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_RHUMB_HPP
|