/usr/include/GeographicLib/PolygonArea.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | /**
* \file PolygonArea.hpp
* \brief Header for GeographicLib::PolygonAreaT class
*
* Copyright (c) Charles Karney (2010-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_POLYGONAREA_HPP)
#define GEOGRAPHICLIB_POLYGONAREA_HPP 1
#include <GeographicLib/Geodesic.hpp>
#include <GeographicLib/GeodesicExact.hpp>
#include <GeographicLib/Rhumb.hpp>
#include <GeographicLib/Accumulator.hpp>
namespace GeographicLib {
/**
* \brief Polygon areas
*
* This computes the area of a polygon whose edges are geodesics using the
* method given in Section 6 of
* - C. F. F. Karney,
* <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
* Algorithms for geodesics</a>,
* J. Geodesy <b>87</b>, 43--55 (2013);
* DOI: <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
* 10.1007/s00190-012-0578-z</a>;
* addenda: <a href="http://geographiclib.sf.net/geod-addenda.html">
* geod-addenda.html</a>.
*
* This class lets you add vertices and edges one at a time to the polygon.
* The sequence must start with a vertex and thereafter vertices and edges
* can be added in any order. Any vertex after the first creates a new edge
* which is the ''shortest'' geodesic from the previous vertex. In some
* cases there may be two or many such shortest geodesics and the area is
* then not uniquely defined. In this case, either add an intermediate
* vertex or add the edge ''as'' an edge (by defining its direction and
* length).
*
* The area and perimeter are accumulated at two times the standard floating
* point precision to guard against the loss of accuracy with many-sided
* polygons. At any point you can ask for the perimeter and area so far.
* There's an option to treat the points as defining a polyline instead of a
* polygon; in that case, only the perimeter is computed.
*
* This is a templated class to allow it to be used with Geodesic,
* GeodesicExact, and Rhumb. GeographicLib::PolygonArea,
* GeographicLib::PolygonAreaExact, and GeographicLib::PolygonAreaRhumb are
* typedefs for these cases.
*
* @tparam GeodType the geodesic class to use.
*
* Example of use:
* \include example-PolygonArea.cpp
*
* <a href="Planimeter.1.html">Planimeter</a> is a command-line utility
* providing access to the functionality of PolygonAreaT.
**********************************************************************/
template <class GeodType = Geodesic>
class PolygonAreaT {
private:
typedef Math::real real;
GeodType _earth;
real _area0; // Full ellipsoid area
bool _polyline; // Assume polyline (don't close and skip area)
unsigned _mask;
unsigned _num;
int _crossings;
Accumulator<> _areasum, _perimetersum;
real _lat0, _lon0, _lat1, _lon1;
static inline int transit(real lon1, real lon2) {
// Return 1 or -1 if crossing prime meridian in east or west direction.
// Otherwise return zero.
// Compute lon12 the same way as Geodesic::Inverse.
lon1 = Math::AngNormalize(lon1);
lon2 = Math::AngNormalize(lon2);
real lon12 = Math::AngDiff(lon1, lon2);
int cross =
lon1 < 0 && lon2 >= 0 && lon12 > 0 ? 1 :
(lon2 < 0 && lon1 >= 0 && lon12 < 0 ? -1 : 0);
return cross;
}
// an alternate version of transit to deal with longitudes in the direct
// problem.
static inline int transitdirect(real lon1, real lon2) {
// We want to compute exactly
// int(floor(lon2 / 360)) - int(floor(lon1 / 360))
// Since we only need the parity of the result we can use std::remquo;
// but this is buggy with g++ 4.8.3 (glibc version < 2.22), see
// https://sourceware.org/bugzilla/show_bug.cgi?id=17569
// and requires C++11. So instead we do
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION != 4
using std::remainder;
lon1 = remainder(lon1, real(720)); lon2 = remainder(lon2, real(720));
return ( (lon2 >= 0 && lon2 < 360 ? 0 : 1) -
(lon1 >= 0 && lon1 < 360 ? 0 : 1) );
#else
using std::fmod;
lon1 = fmod(lon1, real(720)); lon2 = fmod(lon2, real(720));
return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
#endif
}
public:
/**
* Constructor for PolygonAreaT.
*
* @param[in] earth the Geodesic object to use for geodesic calculations.
* @param[in] polyline if true that treat the points as defining a polyline
* instead of a polygon (default = false).
**********************************************************************/
PolygonAreaT(const GeodType& earth, bool polyline = false)
: _earth(earth)
, _area0(_earth.EllipsoidArea())
, _polyline(polyline)
, _mask(GeodType::LATITUDE | GeodType::LONGITUDE | GeodType::DISTANCE |
(_polyline ? GeodType::NONE :
GeodType::AREA | GeodType::LONG_UNROLL))
{ Clear(); }
/**
* Clear PolygonAreaT, allowing a new polygon to be started.
**********************************************************************/
void Clear() {
_num = 0;
_crossings = 0;
_areasum = 0;
_perimetersum = 0;
_lat0 = _lon0 = _lat1 = _lon1 = Math::NaN();
}
/**
* Add a point to the polygon or polyline.
*
* @param[in] lat the latitude of the point (degrees).
* @param[in] lon the longitude of the point (degrees).
*
* \e lat should be in the range [−90°, 90°].
**********************************************************************/
void AddPoint(real lat, real lon);
/**
* Add an edge to the polygon or polyline.
*
* @param[in] azi azimuth at current point (degrees).
* @param[in] s distance from current point to next point (meters).
*
* This does nothing if no points have been added yet. Use
* PolygonAreaT::CurrentPoint to determine the position of the new vertex.
**********************************************************************/
void AddEdge(real azi, real s);
/**
* Return the results so far.
*
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the perimeter of the polygon or length of the
* polyline (meters).
* @param[out] area the area of the polygon (meters<sup>2</sup>); only set
* if \e polyline is false in the constructor.
* @return the number of points.
*
* More points can be added to the polygon after this call.
**********************************************************************/
unsigned Compute(bool reverse, bool sign,
real& perimeter, real& area) const;
/**
* Return the results assuming a tentative final test point is added;
* however, the data for the test point is not saved. This lets you report
* a running result for the perimeter and area as the user moves the mouse
* cursor. Ordinary floating point arithmetic is used to accumulate the
* data for the test point; thus the area and perimeter returned are less
* accurate than if PolygonAreaT::AddPoint and PolygonAreaT::Compute are
* used.
*
* @param[in] lat the latitude of the test point (degrees).
* @param[in] lon the longitude of the test point (degrees).
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the approximate perimeter of the polygon or length
* of the polyline (meters).
* @param[out] area the approximate area of the polygon
* (meters<sup>2</sup>); only set if polyline is false in the
* constructor.
* @return the number of points.
*
* \e lat should be in the range [−90°, 90°].
**********************************************************************/
unsigned TestPoint(real lat, real lon, bool reverse, bool sign,
real& perimeter, real& area) const;
/**
* Return the results assuming a tentative final test point is added via an
* azimuth and distance; however, the data for the test point is not saved.
* This lets you report a running result for the perimeter and area as the
* user moves the mouse cursor. Ordinary floating point arithmetic is used
* to accumulate the data for the test point; thus the area and perimeter
* returned are less accurate than if PolygonAreaT::AddEdge and
* PolygonAreaT::Compute are used.
*
* @param[in] azi azimuth at current point (degrees).
* @param[in] s distance from current point to final test point (meters).
* @param[in] reverse if true then clockwise (instead of counter-clockwise)
* traversal counts as a positive area.
* @param[in] sign if true then return a signed result for the area if
* the polygon is traversed in the "wrong" direction instead of returning
* the area for the rest of the earth.
* @param[out] perimeter the approximate perimeter of the polygon or length
* of the polyline (meters).
* @param[out] area the approximate area of the polygon
* (meters<sup>2</sup>); only set if polyline is false in the
* constructor.
* @return the number of points.
**********************************************************************/
unsigned TestEdge(real azi, real s, bool reverse, bool sign,
real& perimeter, real& area) const;
/// \cond SKIP
/**
* <b>DEPRECATED</b>
* The old name for PolygonAreaT::TestPoint.
**********************************************************************/
unsigned TestCompute(real lat, real lon, bool reverse, bool sign,
real& perimeter, real& area) const {
return TestPoint(lat, lon, reverse, sign, perimeter, area);
}
/// \endcond
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value inherited from the Geodesic object used in the constructor.
**********************************************************************/
Math::real MajorRadius() const { return _earth.MajorRadius(); }
/**
* @return \e f the flattening of the ellipsoid. This is the value
* inherited from the Geodesic object used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _earth.Flattening(); }
/**
* Report the previous vertex added to the polygon or polyline.
*
* @param[out] lat the latitude of the point (degrees).
* @param[out] lon the longitude of the point (degrees).
*
* If no points have been added, then NaNs are returned. Otherwise, \e lon
* will be in the range [−180°, 180°).
**********************************************************************/
void CurrentPoint(real& lat, real& lon) const
{ lat = _lat1; lon = _lon1; }
///@}
};
/**
* @relates PolygonAreaT
*
* Polygon areas using Geodesic. This should be used if the flattening is
* small.
**********************************************************************/
typedef PolygonAreaT<Geodesic> PolygonArea;
/**
* @relates PolygonAreaT
*
* Polygon areas using GeodesicExact. (But note that the implementation of
* areas in GeodesicExact uses a high order series and this is only accurate
* for modest flattenings.)
**********************************************************************/
typedef PolygonAreaT<GeodesicExact> PolygonAreaExact;
/**
* @relates PolygonAreaT
*
* Polygon areas using Rhumb.
**********************************************************************/
typedef PolygonAreaT<Rhumb> PolygonAreaRhumb;
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_POLYGONAREA_HPP
|