This file is indexed.

/usr/include/GeographicLib/PolygonArea.hpp is in libgeographic-dev 1.45-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/**
 * \file PolygonArea.hpp
 * \brief Header for GeographicLib::PolygonAreaT class
 *
 * Copyright (c) Charles Karney (2010-2015) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_POLYGONAREA_HPP)
#define GEOGRAPHICLIB_POLYGONAREA_HPP 1

#include <GeographicLib/Geodesic.hpp>
#include <GeographicLib/GeodesicExact.hpp>
#include <GeographicLib/Rhumb.hpp>
#include <GeographicLib/Accumulator.hpp>

namespace GeographicLib {

  /**
   * \brief Polygon areas
   *
   * This computes the area of a polygon whose edges are geodesics using the
   * method given in Section 6 of
   * - C. F. F. Karney,
   *   <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
   *   Algorithms for geodesics</a>,
   *   J. Geodesy <b>87</b>, 43--55 (2013);
   *   DOI: <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
   *   10.1007/s00190-012-0578-z</a>;
   *   addenda: <a href="http://geographiclib.sf.net/geod-addenda.html">
   *   geod-addenda.html</a>.
   *
   * This class lets you add vertices and edges one at a time to the polygon.
   * The sequence must start with a vertex and thereafter vertices and edges
   * can be added in any order.  Any vertex after the first creates a new edge
   * which is the ''shortest'' geodesic from the previous vertex.  In some
   * cases there may be two or many such shortest geodesics and the area is
   * then not uniquely defined.  In this case, either add an intermediate
   * vertex or add the edge ''as'' an edge (by defining its direction and
   * length).
   *
   * The area and perimeter are accumulated at two times the standard floating
   * point precision to guard against the loss of accuracy with many-sided
   * polygons.  At any point you can ask for the perimeter and area so far.
   * There's an option to treat the points as defining a polyline instead of a
   * polygon; in that case, only the perimeter is computed.
   *
   * This is a templated class to allow it to be used with Geodesic,
   * GeodesicExact, and Rhumb.  GeographicLib::PolygonArea,
   * GeographicLib::PolygonAreaExact, and GeographicLib::PolygonAreaRhumb are
   * typedefs for these cases.
   *
   * @tparam GeodType the geodesic class to use.
   *
   * Example of use:
   * \include example-PolygonArea.cpp
   *
   * <a href="Planimeter.1.html">Planimeter</a> is a command-line utility
   * providing access to the functionality of PolygonAreaT.
   **********************************************************************/

  template <class GeodType = Geodesic>
  class PolygonAreaT {
  private:
    typedef Math::real real;
    GeodType _earth;
    real _area0;                // Full ellipsoid area
    bool _polyline;             // Assume polyline (don't close and skip area)
    unsigned _mask;
    unsigned _num;
    int _crossings;
    Accumulator<> _areasum, _perimetersum;
    real _lat0, _lon0, _lat1, _lon1;
    static inline int transit(real lon1, real lon2) {
      // Return 1 or -1 if crossing prime meridian in east or west direction.
      // Otherwise return zero.
      // Compute lon12 the same way as Geodesic::Inverse.
      lon1 = Math::AngNormalize(lon1);
      lon2 = Math::AngNormalize(lon2);
      real lon12 = Math::AngDiff(lon1, lon2);
      int cross =
        lon1 < 0 && lon2 >= 0 && lon12 > 0 ? 1 :
        (lon2 < 0 && lon1 >= 0 && lon12 < 0 ? -1 : 0);
      return cross;
    }
    // an alternate version of transit to deal with longitudes in the direct
    // problem.
    static inline int transitdirect(real lon1, real lon2) {
      // We want to compute exactly
      //   int(floor(lon2 / 360)) - int(floor(lon1 / 360))
      // Since we only need the parity of the result we can use std::remquo;
      // but this is buggy with g++ 4.8.3 (glibc version < 2.22), see
      //   https://sourceware.org/bugzilla/show_bug.cgi?id=17569
      // and requires C++11.  So instead we do
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION != 4
      using std::remainder;
      lon1 = remainder(lon1, real(720)); lon2 = remainder(lon2, real(720));
      return ( (lon2 >= 0 && lon2 < 360 ? 0 : 1) -
               (lon1 >= 0 && lon1 < 360 ? 0 : 1) );
#else
      using std::fmod;
      lon1 = fmod(lon1, real(720)); lon2 = fmod(lon2, real(720));
      return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
               ((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
#endif
    }
  public:

    /**
     * Constructor for PolygonAreaT.
     *
     * @param[in] earth the Geodesic object to use for geodesic calculations.
     * @param[in] polyline if true that treat the points as defining a polyline
     *   instead of a polygon (default = false).
     **********************************************************************/
    PolygonAreaT(const GeodType& earth, bool polyline = false)
      : _earth(earth)
      , _area0(_earth.EllipsoidArea())
      , _polyline(polyline)
      , _mask(GeodType::LATITUDE | GeodType::LONGITUDE | GeodType::DISTANCE |
              (_polyline ? GeodType::NONE :
               GeodType::AREA | GeodType::LONG_UNROLL))
    { Clear(); }

    /**
     * Clear PolygonAreaT, allowing a new polygon to be started.
     **********************************************************************/
    void Clear() {
      _num = 0;
      _crossings = 0;
      _areasum = 0;
      _perimetersum = 0;
      _lat0 = _lon0 = _lat1 = _lon1 = Math::NaN();
    }

    /**
     * Add a point to the polygon or polyline.
     *
     * @param[in] lat the latitude of the point (degrees).
     * @param[in] lon the longitude of the point (degrees).
     *
     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    void AddPoint(real lat, real lon);

    /**
     * Add an edge to the polygon or polyline.
     *
     * @param[in] azi azimuth at current point (degrees).
     * @param[in] s distance from current point to next point (meters).
     *
     * This does nothing if no points have been added yet.  Use
     * PolygonAreaT::CurrentPoint to determine the position of the new vertex.
     **********************************************************************/
    void AddEdge(real azi, real s);

    /**
     * Return the results so far.
     *
     * @param[in] reverse if true then clockwise (instead of counter-clockwise)
     *   traversal counts as a positive area.
     * @param[in] sign if true then return a signed result for the area if
     *   the polygon is traversed in the "wrong" direction instead of returning
     *   the area for the rest of the earth.
     * @param[out] perimeter the perimeter of the polygon or length of the
     *   polyline (meters).
     * @param[out] area the area of the polygon (meters<sup>2</sup>); only set
     *   if \e polyline is false in the constructor.
     * @return the number of points.
     *
     * More points can be added to the polygon after this call.
     **********************************************************************/
    unsigned Compute(bool reverse, bool sign,
                     real& perimeter, real& area) const;

    /**
     * Return the results assuming a tentative final test point is added;
     * however, the data for the test point is not saved.  This lets you report
     * a running result for the perimeter and area as the user moves the mouse
     * cursor.  Ordinary floating point arithmetic is used to accumulate the
     * data for the test point; thus the area and perimeter returned are less
     * accurate than if PolygonAreaT::AddPoint and PolygonAreaT::Compute are
     * used.
     *
     * @param[in] lat the latitude of the test point (degrees).
     * @param[in] lon the longitude of the test point (degrees).
     * @param[in] reverse if true then clockwise (instead of counter-clockwise)
     *   traversal counts as a positive area.
     * @param[in] sign if true then return a signed result for the area if
     *   the polygon is traversed in the "wrong" direction instead of returning
     *   the area for the rest of the earth.
     * @param[out] perimeter the approximate perimeter of the polygon or length
     *   of the polyline (meters).
     * @param[out] area the approximate area of the polygon
     *   (meters<sup>2</sup>); only set if polyline is false in the
     *   constructor.
     * @return the number of points.
     *
     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    unsigned TestPoint(real lat, real lon, bool reverse, bool sign,
                       real& perimeter, real& area) const;

    /**
     * Return the results assuming a tentative final test point is added via an
     * azimuth and distance; however, the data for the test point is not saved.
     * This lets you report a running result for the perimeter and area as the
     * user moves the mouse cursor.  Ordinary floating point arithmetic is used
     * to accumulate the data for the test point; thus the area and perimeter
     * returned are less accurate than if PolygonAreaT::AddEdge and
     * PolygonAreaT::Compute are used.
     *
     * @param[in] azi azimuth at current point (degrees).
     * @param[in] s distance from current point to final test point (meters).
     * @param[in] reverse if true then clockwise (instead of counter-clockwise)
     *   traversal counts as a positive area.
     * @param[in] sign if true then return a signed result for the area if
     *   the polygon is traversed in the "wrong" direction instead of returning
     *   the area for the rest of the earth.
     * @param[out] perimeter the approximate perimeter of the polygon or length
     *   of the polyline (meters).
     * @param[out] area the approximate area of the polygon
     *   (meters<sup>2</sup>); only set if polyline is false in the
     *   constructor.
     * @return the number of points.
     **********************************************************************/
    unsigned TestEdge(real azi, real s, bool reverse, bool sign,
                      real& perimeter, real& area) const;

    /// \cond SKIP
    /**
     * <b>DEPRECATED</b>
     * The old name for PolygonAreaT::TestPoint.
     **********************************************************************/
    unsigned TestCompute(real lat, real lon, bool reverse, bool sign,
                         real& perimeter, real& area) const {
      return TestPoint(lat, lon, reverse, sign, perimeter, area);
    }
    /// \endcond

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value inherited from the Geodesic object used in the constructor.
     **********************************************************************/

    Math::real MajorRadius() const { return _earth.MajorRadius(); }

    /**
     * @return \e f the flattening of the ellipsoid.  This is the value
     *   inherited from the Geodesic object used in the constructor.
     **********************************************************************/
    Math::real Flattening() const { return _earth.Flattening(); }

    /**
     * Report the previous vertex added to the polygon or polyline.
     *
     * @param[out] lat the latitude of the point (degrees).
     * @param[out] lon the longitude of the point (degrees).
     *
     * If no points have been added, then NaNs are returned.  Otherwise, \e lon
     * will be in the range [&minus;180&deg;, 180&deg;).
     **********************************************************************/
    void CurrentPoint(real& lat, real& lon) const
    { lat = _lat1; lon = _lon1; }
    ///@}
  };

  /**
   * @relates PolygonAreaT
   *
   * Polygon areas using Geodesic.  This should be used if the flattening is
   * small.
   **********************************************************************/
  typedef PolygonAreaT<Geodesic> PolygonArea;

  /**
   * @relates PolygonAreaT
   *
   * Polygon areas using GeodesicExact.  (But note that the implementation of
   * areas in GeodesicExact uses a high order series and this is only accurate
   * for modest flattenings.)
   **********************************************************************/
  typedef PolygonAreaT<GeodesicExact> PolygonAreaExact;

  /**
   * @relates PolygonAreaT
   *
   * Polygon areas using Rhumb.
   **********************************************************************/
  typedef PolygonAreaT<Rhumb> PolygonAreaRhumb;

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_POLYGONAREA_HPP