/usr/include/GeographicLib/Math.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 | /**
* \file Math.hpp
* \brief Header for GeographicLib::Math class
*
* Copyright (c) Charles Karney (2008-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
// Constants.hpp includes Math.hpp. Place this include outside Math.hpp's
// include guard to enforce this ordering.
#include <GeographicLib/Constants.hpp>
#if !defined(GEOGRAPHICLIB_MATH_HPP)
#define GEOGRAPHICLIB_MATH_HPP 1
/**
* Are C++11 math functions available?
**********************************************************************/
#if !defined(GEOGRAPHICLIB_CXX11_MATH)
// Recent versions of g++ -std=c++11 (4.7 and later?) set __cplusplus to 201103
// and support the new C++11 mathematical functions, std::atanh, etc. However
// the Android toolchain, which uses g++ -std=c++11 (4.8 as of 2014-03-11,
// according to Pullan Lu), does not support std::atanh. Android toolchains
// might define __ANDROID__ or ANDROID; so need to check both. With OSX the
// version is GNUC version 4.2 and __cplusplus is set to 201103, so remove the
// version check on GNUC.
# if defined(__GNUC__) && __cplusplus >= 201103 && \
!(defined(__ANDROID__) || defined(ANDROID) || defined(__CYGWIN__))
# define GEOGRAPHICLIB_CXX11_MATH 1
// Visual C++ 12 supports these functions
# elif defined(_MSC_VER) && _MSC_VER >= 1800
# define GEOGRAPHICLIB_CXX11_MATH 1
# else
# define GEOGRAPHICLIB_CXX11_MATH 0
# endif
#endif
#if !defined(GEOGRAPHICLIB_WORDS_BIGENDIAN)
# define GEOGRAPHICLIB_WORDS_BIGENDIAN 0
#endif
#if !defined(GEOGRAPHICLIB_HAVE_LONG_DOUBLE)
# define GEOGRAPHICLIB_HAVE_LONG_DOUBLE 0
#endif
#if !defined(GEOGRAPHICLIB_PRECISION)
/**
* The precision of floating point numbers used in %GeographicLib. 1 means
* float (single precision); 2 (the default) means double; 3 means long double;
* 4 is reserved for quadruple precision. Nearly all the testing has been
* carried out with doubles and that's the recommended configuration. In order
* for long double to be used, GEOGRAPHICLIB_HAVE_LONG_DOUBLE needs to be
* defined. Note that with Microsoft Visual Studio, long double is the same as
* double.
**********************************************************************/
# define GEOGRAPHICLIB_PRECISION 2
#endif
#include <cmath>
#include <algorithm>
#include <limits>
#if GEOGRAPHICLIB_PRECISION == 4
#include <boost/version.hpp>
#if BOOST_VERSION >= 105600
#include <boost/cstdfloat.hpp>
#endif
#include <boost/multiprecision/float128.hpp>
#include <boost/math/special_functions.hpp>
__float128 fmaq(__float128, __float128, __float128);
#elif GEOGRAPHICLIB_PRECISION == 5
#include <mpreal.h>
#endif
#if GEOGRAPHICLIB_PRECISION > 3
// volatile keyword makes no sense for multiprec types
#define GEOGRAPHICLIB_VOLATILE
// Signal a convergence failure with multiprec types by throwing an exception
// at loop exit.
#define GEOGRAPHICLIB_PANIC \
(throw GeographicLib::GeographicErr("Convergence failure"), false)
#else
#define GEOGRAPHICLIB_VOLATILE volatile
// Ignore convergence failures with standard floating points types by allowing
// loop to exit cleanly.
#define GEOGRAPHICLIB_PANIC false
#endif
namespace GeographicLib {
/**
* \brief Mathematical functions needed by %GeographicLib
*
* Define mathematical functions in order to localize system dependencies and
* to provide generic versions of the functions. In addition define a real
* type to be used by %GeographicLib.
*
* Example of use:
* \include example-Math.cpp
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Math {
private:
void dummy() {
GEOGRAPHICLIB_STATIC_ASSERT(GEOGRAPHICLIB_PRECISION >= 1 &&
GEOGRAPHICLIB_PRECISION <= 5,
"Bad value of precision");
}
Math(); // Disable constructor
public:
#if GEOGRAPHICLIB_HAVE_LONG_DOUBLE
/**
* The extended precision type for real numbers, used for some testing.
* This is long double on computers with this type; otherwise it is double.
**********************************************************************/
typedef long double extended;
#else
typedef double extended;
#endif
#if GEOGRAPHICLIB_PRECISION == 2
/**
* The real type for %GeographicLib. Nearly all the testing has been done
* with \e real = double. However, the algorithms should also work with
* float and long double (where available). (<b>CAUTION</b>: reasonable
* accuracy typically cannot be obtained using floats.)
**********************************************************************/
typedef double real;
#elif GEOGRAPHICLIB_PRECISION == 1
typedef float real;
#elif GEOGRAPHICLIB_PRECISION == 3
typedef extended real;
#elif GEOGRAPHICLIB_PRECISION == 4
typedef boost::multiprecision::float128 real;
#elif GEOGRAPHICLIB_PRECISION == 5
typedef mpfr::mpreal real;
#else
typedef double real;
#endif
/**
* @return the number of bits of precision in a real number.
**********************************************************************/
static inline int digits() {
#if GEOGRAPHICLIB_PRECISION != 5
return std::numeric_limits<real>::digits;
#else
return std::numeric_limits<real>::digits();
#endif
}
/**
* Set the binary precision of a real number.
*
* @param[in] ndigits the number of bits of precision.
* @return the resulting number of bits of precision.
*
* This only has an effect when GEOGRAPHICLIB_PRECISION == 5. See also
* Utility::set_digits for caveats about when this routine should be
* called.
**********************************************************************/
static inline int set_digits(int ndigits) {
#if GEOGRAPHICLIB_PRECISION != 5
(void)ndigits;
#else
mpfr::mpreal::set_default_prec(ndigits >= 2 ? ndigits : 2);
#endif
return digits();
}
/**
* @return the number of decimal digits of precision in a real number.
**********************************************************************/
static inline int digits10() {
#if GEOGRAPHICLIB_PRECISION != 5
return std::numeric_limits<real>::digits10;
#else
return std::numeric_limits<real>::digits10();
#endif
}
/**
* Number of additional decimal digits of precision for real relative to
* double (0 for float).
**********************************************************************/
static inline int extra_digits() {
return
digits10() > std::numeric_limits<double>::digits10 ?
digits10() - std::numeric_limits<double>::digits10 : 0;
}
#if GEOGRAPHICLIB_PRECISION <= 3
/**
* Number of additional decimal digits of precision of real relative to
* double (0 for float).
*
* <b>DEPRECATED</b>: use extra_digits() instead
**********************************************************************/
static const int extradigits =
std::numeric_limits<real>::digits10 >
std::numeric_limits<double>::digits10 ?
std::numeric_limits<real>::digits10 -
std::numeric_limits<double>::digits10 : 0;
#endif
/**
* true if the machine is big-endian.
**********************************************************************/
static const bool bigendian = GEOGRAPHICLIB_WORDS_BIGENDIAN;
/**
* @tparam T the type of the returned value.
* @return π.
**********************************************************************/
template<typename T> static inline T pi() {
using std::atan2;
static const T pi = atan2(T(0), T(-1));
return pi;
}
/**
* A synonym for pi<real>().
**********************************************************************/
static inline real pi() { return pi<real>(); }
/**
* @tparam T the type of the returned value.
* @return the number of radians in a degree.
**********************************************************************/
template<typename T> static inline T degree() {
static const T degree = pi<T>() / 180;
return degree;
}
/**
* A synonym for degree<real>().
**********************************************************************/
static inline real degree() { return degree<real>(); }
/**
* Square a number.
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return <i>x</i><sup>2</sup>.
**********************************************************************/
template<typename T> static inline T sq(T x)
{ return x * x; }
/**
* The hypotenuse function avoiding underflow and overflow.
*
* @tparam T the type of the arguments and the returned value.
* @param[in] x
* @param[in] y
* @return sqrt(<i>x</i><sup>2</sup> + <i>y</i><sup>2</sup>).
**********************************************************************/
template<typename T> static inline T hypot(T x, T y) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::hypot; return hypot(x, y);
#else
using std::abs; using std::sqrt;
x = abs(x); y = abs(y);
if (x < y) std::swap(x, y); // Now x >= y >= 0
y /= (x ? x : 1);
return x * sqrt(1 + y * y);
// For an alternative (square-root free) method see
// C. Moler and D. Morrision (1983) https://dx.doi.org/10.1147/rd.276.0577
// and A. A. Dubrulle (1983) https://dx.doi.org/10.1147/rd.276.0582
#endif
}
/**
* exp(\e x) − 1 accurate near \e x = 0.
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return exp(\e x) − 1.
**********************************************************************/
template<typename T> static inline T expm1(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::expm1; return expm1(x);
#else
using std::exp; using std::abs; using std::log;
GEOGRAPHICLIB_VOLATILE T
y = exp(x),
z = y - 1;
// The reasoning here is similar to that for log1p. The expression
// mathematically reduces to exp(x) - 1, and the factor z/log(y) = (y -
// 1)/log(y) is a slowly varying quantity near y = 1 and is accurately
// computed.
return abs(x) > 1 ? z : (z == 0 ? x : x * z / log(y));
#endif
}
/**
* log(1 + \e x) accurate near \e x = 0.
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return log(1 + \e x).
**********************************************************************/
template<typename T> static inline T log1p(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::log1p; return log1p(x);
#else
using std::log;
GEOGRAPHICLIB_VOLATILE T
y = 1 + x,
z = y - 1;
// Here's the explanation for this magic: y = 1 + z, exactly, and z
// approx x, thus log(y)/z (which is nearly constant near z = 0) returns
// a good approximation to the true log(1 + x)/x. The multiplication x *
// (log(y)/z) introduces little additional error.
return z == 0 ? x : x * log(y) / z;
#endif
}
/**
* The inverse hyperbolic sine function.
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return asinh(\e x).
**********************************************************************/
template<typename T> static inline T asinh(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::asinh; return asinh(x);
#else
using std::abs; T y = abs(x); // Enforce odd parity
y = log1p(y * (1 + y/(hypot(T(1), y) + 1)));
return x < 0 ? -y : y;
#endif
}
/**
* The inverse hyperbolic tangent function.
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return atanh(\e x).
**********************************************************************/
template<typename T> static inline T atanh(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::atanh; return atanh(x);
#else
using std::abs; T y = abs(x); // Enforce odd parity
y = log1p(2 * y/(1 - y))/2;
return x < 0 ? -y : y;
#endif
}
/**
* The cube root function.
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return the real cube root of \e x.
**********************************************************************/
template<typename T> static inline T cbrt(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::cbrt; return cbrt(x);
#else
using std::abs; using std::pow;
T y = pow(abs(x), 1/T(3)); // Return the real cube root
return x < 0 ? -y : y;
#endif
}
/**
* Fused multiply and add.
*
* @tparam T the type of the arguments and the returned value.
* @param[in] x
* @param[in] y
* @param[in] z
* @return <i>xy</i> + <i>z</i>, correctly rounded (on those platforms with
* support for the <code>fma</code> instruction).
*
* On platforms without the <code>fma</code> instruction, no attempt is
* made to improve on the result of a rounded multiplication followed by a
* rounded addition.
**********************************************************************/
template<typename T> static inline T fma(T x, T y, T z) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::fma; return fma(x, y, z);
#else
return x * y + z;
#endif
}
/**
* Normalize a two-vector.
*
* @tparam T the type of the argument and the returned value.
* @param[in,out] x on output set to <i>x</i>/hypot(<i>x</i>, <i>y</i>).
* @param[in,out] y on output set to <i>y</i>/hypot(<i>x</i>, <i>y</i>).
**********************************************************************/
template<typename T> static inline void norm(T& x, T& y)
{ T h = hypot(x, y); x /= h; y /= h; }
/**
* The error-free sum of two numbers.
*
* @tparam T the type of the argument and the returned value.
* @param[in] u
* @param[in] v
* @param[out] t the exact error given by (\e u + \e v) - \e s.
* @return \e s = round(\e u + \e v).
*
* See D. E. Knuth, TAOCP, Vol 2, 4.2.2, Theorem B. (Note that \e t can be
* the same as one of the first two arguments.)
**********************************************************************/
template<typename T> static inline T sum(T u, T v, T& t) {
GEOGRAPHICLIB_VOLATILE T s = u + v;
GEOGRAPHICLIB_VOLATILE T up = s - v;
GEOGRAPHICLIB_VOLATILE T vpp = s - up;
up -= u;
vpp -= v;
t = -(up + vpp);
// u + v = s + t
// = round(u + v) + t
return s;
}
/**
* Evaluate a polynomial.
*
* @tparam T the type of the arguments and returned value.
* @param[in] N the order of the polynomial.
* @param[in] p the coefficient array (of size \e N + 1).
* @param[in] x the variable.
* @return the value of the polynomial.
*
* Evaluate <i>y</i> = ∑<sub><i>n</i>=0..<i>N</i></sub>
* <i>p</i><sub><i>n</i></sub> <i>x</i><sup><i>N</i>−<i>n</i></sup>.
* Return 0 if \e N < 0. Return <i>p</i><sub>0</sub>, if \e N = 0 (even
* if \e x is infinite or a nan). The evaluation uses Horner's method.
**********************************************************************/
template<typename T> static inline T polyval(int N, const T p[], T x)
{ T y = N < 0 ? 0 : *p++; while (--N >= 0) y = y * x + *p++; return y; }
/**
* Normalize an angle.
*
* @tparam T the type of the argument and returned value.
* @param[in] x the angle in degrees.
* @return the angle reduced to the range [−180°, 180°).
*
* The range of \e x is unrestricted.
**********************************************************************/
template<typename T> static inline T AngNormalize(T x) {
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION != 4
using std::remainder;
x = remainder(x, T(360)); return x != 180 ? x : -180;
#else
using std::fmod;
x = fmod(x, T(360));
return x < -180 ? x + 360 : (x < 180 ? x : x - 360);
#endif
}
/**
* Normalize an arbitrary angle.
*
* @tparam T the type of the argument and returned value.
* @param[in] x the angle in degrees.
* @return the angle reduced to the range [−180°, 180°).
*
* <b>DEPRECATED</b>: use AngNormalize instead.
**********************************************************************/
template<typename T> static inline T AngNormalize2(T x)
{ return AngNormalize<T>(x); }
/**
* Normalize a latitude.
*
* @tparam T the type of the argument and returned value.
* @param[in] x the angle in degrees.
* @return x if it is in the range [−90°, 90°], otherwise
* return NaN.
**********************************************************************/
template<typename T> static inline T LatFix(T x)
{ using std::abs; return abs(x) > 90 ? NaN<T>() : x; }
/**
* Difference of two angles reduced to [−180°, 180°]
*
* @tparam T the type of the arguments and returned value.
* @param[in] x the first angle in degrees.
* @param[in] y the second angle in degrees.
* @return \e y − \e x, reduced to the range [−180°,
* 180°].
*
* The result is equivalent to computing the difference exactly, reducing
* it to (−180°, 180°] and rounding the result. Note that
* this prescription allows −180° to be returned (e.g., if \e x
* is tiny and negative and \e y = 180°).
**********************************************************************/
template<typename T> static inline T AngDiff(T x, T y) {
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION != 4
using std::remainder;
T t, d = - AngNormalize(sum(remainder( x, T(360)),
remainder(-y, T(360)), t));
#else
T t, d = - AngNormalize(sum(AngNormalize(x), AngNormalize(-y), t));
#endif
// Here y - x = d - t (mod 360), exactly, where d is in (-180,180] and
// abs(t) <= eps (eps = 2^-45 for doubles). The only case where the
// addition of t takes the result outside the range (-180,180] is d = 180
// and t < 0. The case, d = -180 + eps, t = eps, can't happen, since
// sum would have returned the exact result in such a case (i.e., given t
// = 0).
return (d == 180 && t < 0 ? -180 : d) - t;
}
/**
* Coarsen a value close to zero.
*
* @tparam T the type of the argument and returned value.
* @param[in] x
* @return the coarsened value.
*
* The makes the smallest gap in \e x = 1/16 - nextafter(1/16, 0) =
* 1/2<sup>57</sup> for reals = 0.7 pm on the earth if \e x is an angle in
* degrees. (This is about 1000 times more resolution than we get with
* angles around 90°.) We use this to avoid having to deal with near
* singular cases when \e x is non-zero but tiny (e.g.,
* 10<sup>−200</sup>). This also converts -0 to +0.
**********************************************************************/
template<typename T> static inline T AngRound(T x) {
using std::abs;
const T z = 1/T(16);
GEOGRAPHICLIB_VOLATILE T y = abs(x);
// The compiler mustn't "simplify" z - (z - y) to y
y = y < z ? z - (z - y) : y;
#if GEOGRAPHICLIB_PRECISION == 4
// With quad precision and x = +/-0, this gives y = -0. So change test
// to x <= 0 here to force +0 to be returned.
return x <= 0 ? 0 - y : y;
#elif GEOGRAPHICLIB_PRECISION == 5
// With mpfr, 0 - y is a call to +=(int) which doesn't fix the sign of -0
return x < 0 ? T(0) - y : y;
#else
return x < 0 ? 0 - y : y;
#endif
}
/**
* Evaluate the sine and cosine function with the argument in degrees
*
* @tparam T the type of the arguments.
* @param[in] x in degrees.
* @param[out] sinx sin(<i>x</i>).
* @param[out] cosx cos(<i>x</i>).
*
* The results obey exactly the elementary properties of the trigonometric
* functions, e.g., sin 9° = cos 81° = − sin 123456789°.
**********************************************************************/
template<typename T> static inline void sincosd(T x, T& sinx, T& cosx) {
// In order to minimize round-off errors, this function exactly reduces
// the argument to the range [-45, 45] before converting it to radians.
using std::sin; using std::cos;
T r; int q;
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION <= 3 && \
!defined(__GNUC__)
// Disable for gcc because of bug in glibc version < 2.22, see
// https://sourceware.org/bugzilla/show_bug.cgi?id=17569
// Once this fix is widely deployed, should insert a runtime test for the
// glibc version number.
using std::remquo;
r = remquo(x, T(90), &q);
#else
using std::fmod; using std::floor;
r = fmod(x, T(360));
q = int(floor(r / 90 + T(0.5)));
r -= 90 * q;
#endif
// now abs(r) <= 45
r *= degree();
// Possibly could call the gnu extension sincos
T s = sin(r), c = cos(r);
switch (unsigned(q) & 3U) {
case 0U: sinx = s; cosx = c; break;
case 1U: sinx = c; cosx = 0 - s; break;
case 2U: sinx = 0 - s; cosx = 0 - c; break;
default: sinx = 0 - c; cosx = s; break; // case 3U
}
}
/**
* Evaluate the sine function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return sin(<i>x</i>).
**********************************************************************/
template<typename T> static inline T sind(T x) {
// See sincosd
using std::sin; using std::cos;
T r; int q;
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION <= 3 && \
!defined(__GNUC__)
using std::remquo;
r = remquo(x, T(90), &q);
#else
using std::fmod; using std::floor;
r = fmod(x, T(360));
q = int(floor(r / 90 + T(0.5)));
r -= 90 * q;
#endif
// now abs(r) <= 45
r *= degree();
unsigned p = unsigned(q);
r = p & 1U ? cos(r) : sin(r);
return p & 2U ? 0 - r : r;
}
/**
* Evaluate the cosine function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return cos(<i>x</i>).
**********************************************************************/
template<typename T> static inline T cosd(T x) {
// See sincosd
using std::sin; using std::cos;
T r; int q;
#if GEOGRAPHICLIB_CXX11_MATH && GEOGRAPHICLIB_PRECISION <= 3 && \
!defined(__GNUC__)
using std::remquo;
r = remquo(x, T(90), &q);
#else
using std::fmod; using std::floor;
r = fmod(x, T(360));
q = int(floor(r / 90 + T(0.5)));
r -= 90 * q;
#endif
// now abs(r) <= 45
r *= degree();
unsigned p = unsigned(q + 1);
r = p & 1U ? cos(r) : sin(r);
return p & 2U ? 0 - r : r;
}
/**
* Evaluate the tangent function with the argument in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x in degrees.
* @return tan(<i>x</i>).
*
* If \e x = ±90°, then a suitably large (but finite) value is
* returned.
**********************************************************************/
template<typename T> static inline T tand(T x) {
static const T overflow = 1 / sq(std::numeric_limits<T>::epsilon());
T s, c;
sincosd(x, s, c);
return c ? s / c : (s < 0 ? -overflow : overflow);
}
/**
* Evaluate the atan2 function with the result in degrees
*
* @tparam T the type of the arguments and the returned value.
* @param[in] y
* @param[in] x
* @return atan2(<i>y</i>, <i>x</i>) in degrees.
*
* The result is in the range [−180° 180°). N.B.,
* atan2d(±0, −1) = −180°; atan2d(+ε,
* −1) = +180°, for ε positive and tiny;
* atan2d(±0, 1) = ±0°.
**********************************************************************/
template<typename T> static inline T atan2d(T y, T x) {
// In order to minimize round-off errors, this function rearranges the
// arguments so that result of atan2 is in the range [-pi/4, pi/4] before
// converting it to degrees and mapping the result to the correct
// quadrant.
using std::atan2; using std::abs;
int q = 0;
if (abs(y) > abs(x)) { std::swap(x, y); q = 2; }
if (x < 0) { x = -x; ++q; }
// here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
T ang = atan2(y, x) / degree();
switch (q) {
// Note that atan2d(-0.0, 1.0) will return -0. However, we expect that
// atan2d will not be called with y = -0. If need be, include
//
// case 0: ang = 0 + ang; break;
//
// and handle mpfr as in AngRound.
case 1: ang = (y > 0 ? 180 : -180) - ang; break;
case 2: ang = 90 - ang; break;
case 3: ang = -90 + ang; break;
}
return ang;
}
/**
* Evaluate the atan function with the result in degrees
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return atan(<i>x</i>) in degrees.
**********************************************************************/
template<typename T> static inline T atand(T x)
{ return atan2d(x, T(1)); }
/**
* Evaluate <i>e</i> atanh(<i>e x</i>)
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return <i>e</i> atanh(<i>e x</i>)
*
* If <i>e</i><sup>2</sup> is negative (<i>e</i> is imaginary), the
* expression is evaluated in terms of atan.
**********************************************************************/
template<typename T> static T eatanhe(T x, T es);
/**
* tanχ in terms of tanφ
*
* @tparam T the type of the argument and the returned value.
* @param[in] tau τ = tanφ
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return τ′ = tanχ
*
* See Eqs. (7--9) of
* C. F. F. Karney,
* <a href="https://dx.doi.org/10.1007/s00190-011-0445-3">
* Transverse Mercator with an accuracy of a few nanometers,</a>
* J. Geodesy 85(8), 475--485 (Aug. 2011)
* (preprint <a href="http://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
**********************************************************************/
template<typename T> static T taupf(T tau, T es);
/**
* tanφ in terms of tanχ
*
* @tparam T the type of the argument and the returned value.
* @param[in] taup τ′ = tanχ
* @param[in] es the signed eccentricity = sign(<i>e</i><sup>2</sup>)
* sqrt(|<i>e</i><sup>2</sup>|)
* @return τ = tanφ
*
* See Eqs. (19--21) of
* C. F. F. Karney,
* <a href="https://dx.doi.org/10.1007/s00190-011-0445-3">
* Transverse Mercator with an accuracy of a few nanometers,</a>
* J. Geodesy 85(8), 475--485 (Aug. 2011)
* (preprint <a href="http://arxiv.org/abs/1002.1417">arXiv:1002.1417</a>).
**********************************************************************/
template<typename T> static T tauf(T taup, T es);
/**
* Test for finiteness.
*
* @tparam T the type of the argument.
* @param[in] x
* @return true if number is finite, false if NaN or infinite.
**********************************************************************/
template<typename T> static inline bool isfinite(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::isfinite; return isfinite(x);
#else
using std::abs;
return abs(x) <= (std::numeric_limits<T>::max)();
#endif
}
/**
* The NaN (not a number)
*
* @tparam T the type of the returned value.
* @return NaN if available, otherwise return the max real of type T.
**********************************************************************/
template<typename T> static inline T NaN() {
return std::numeric_limits<T>::has_quiet_NaN ?
std::numeric_limits<T>::quiet_NaN() :
(std::numeric_limits<T>::max)();
}
/**
* A synonym for NaN<real>().
**********************************************************************/
static inline real NaN() { return NaN<real>(); }
/**
* Test for NaN.
*
* @tparam T the type of the argument.
* @param[in] x
* @return true if argument is a NaN.
**********************************************************************/
template<typename T> static inline bool isnan(T x) {
#if GEOGRAPHICLIB_CXX11_MATH
using std::isnan; return isnan(x);
#else
return x != x;
#endif
}
/**
* Infinity
*
* @tparam T the type of the returned value.
* @return infinity if available, otherwise return the max real.
**********************************************************************/
template<typename T> static inline T infinity() {
return std::numeric_limits<T>::has_infinity ?
std::numeric_limits<T>::infinity() :
(std::numeric_limits<T>::max)();
}
/**
* A synonym for infinity<real>().
**********************************************************************/
static inline real infinity() { return infinity<real>(); }
/**
* Swap the bytes of a quantity
*
* @tparam T the type of the argument and the returned value.
* @param[in] x
* @return x with its bytes swapped.
**********************************************************************/
template<typename T> static inline T swab(T x) {
union {
T r;
unsigned char c[sizeof(T)];
} b;
b.r = x;
for (int i = sizeof(T)/2; i--; )
std::swap(b.c[i], b.c[sizeof(T) - 1 - i]);
return b.r;
}
#if GEOGRAPHICLIB_PRECISION == 4
typedef boost::math::policies::policy
< boost::math::policies::domain_error
<boost::math::policies::errno_on_error>,
boost::math::policies::pole_error
<boost::math::policies::errno_on_error>,
boost::math::policies::overflow_error
<boost::math::policies::errno_on_error>,
boost::math::policies::evaluation_error
<boost::math::policies::errno_on_error> >
boost_special_functions_policy;
static inline real hypot(real x, real y)
{ return boost::math::hypot(x, y, boost_special_functions_policy()); }
static inline real expm1(real x)
{ return boost::math::expm1(x, boost_special_functions_policy()); }
static inline real log1p(real x)
{ return boost::math::log1p(x, boost_special_functions_policy()); }
static inline real asinh(real x)
{ return boost::math::asinh(x, boost_special_functions_policy()); }
static inline real atanh(real x)
{ return boost::math::atanh(x, boost_special_functions_policy()); }
static inline real cbrt(real x)
{ return boost::math::cbrt(x, boost_special_functions_policy()); }
static inline real fma(real x, real y, real z)
{ return fmaq(__float128(x), __float128(y), __float128(z)); }
static inline bool isnan(real x) { return boost::math::isnan(x); }
static inline bool isfinite(real x) { return boost::math::isfinite(x); }
#endif
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_MATH_HPP
|