This file is indexed.

/usr/include/GeographicLib/LocalCartesian.hpp is in libgeographic-dev 1.45-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/**
 * \file LocalCartesian.hpp
 * \brief Header for GeographicLib::LocalCartesian class
 *
 * Copyright (c) Charles Karney (2008-2015) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_LOCALCARTESIAN_HPP)
#define GEOGRAPHICLIB_LOCALCARTESIAN_HPP 1

#include <GeographicLib/Geocentric.hpp>
#include <GeographicLib/Constants.hpp>

namespace GeographicLib {

  /**
   * \brief Local cartesian coordinates
   *
   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
   * to local cartesian coordinates (\e x, \e y, \e z).  The origin of local
   * cartesian coordinate system is at \e lat = \e lat0, \e lon = \e lon0, \e h
   * = \e h0. The \e z axis is normal to the ellipsoid; the \e y axis points
   * due north.  The plane \e z = - \e h0 is tangent to the ellipsoid.
   *
   * The conversions all take place via geocentric coordinates using a
   * Geocentric object (by default Geocentric::WGS84()).
   *
   * Example of use:
   * \include example-LocalCartesian.cpp
   *
   * <a href="CartConvert.1.html">CartConvert</a> is a command-line utility
   * providing access to the functionality of Geocentric and LocalCartesian.
   **********************************************************************/

  class GEOGRAPHICLIB_EXPORT LocalCartesian {
  private:
    typedef Math::real real;
    static const size_t dim_ = 3;
    static const size_t dim2_ = dim_ * dim_;
    Geocentric _earth;
    real _lat0, _lon0, _h0;
    real _x0, _y0, _z0, _r[dim2_];
    void IntForward(real lat, real lon, real h, real& x, real& y, real& z,
                    real M[dim2_]) const;
    void IntReverse(real x, real y, real z, real& lat, real& lon, real& h,
                    real M[dim2_]) const;
    void MatrixMultiply(real M[dim2_]) const;
  public:

    /**
     * Constructor setting the origin.
     *
     * @param[in] lat0 latitude at origin (degrees).
     * @param[in] lon0 longitude at origin (degrees).
     * @param[in] h0 height above ellipsoid at origin (meters); default 0.
     * @param[in] earth Geocentric object for the transformation; default
     *   Geocentric::WGS84().
     *
     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    LocalCartesian(real lat0, real lon0, real h0 = 0,
                   const Geocentric& earth = Geocentric::WGS84())
      : _earth(earth)
    { Reset(lat0, lon0, h0); }

    /**
     * Default constructor.
     *
     * @param[in] earth Geocentric object for the transformation; default
     *   Geocentric::WGS84().
     *
     * Sets \e lat0 = 0, \e lon0 = 0, \e h0 = 0.
     **********************************************************************/
    explicit LocalCartesian(const Geocentric& earth = Geocentric::WGS84())
      : _earth(earth)
    { Reset(real(0), real(0), real(0)); }

    /**
     * Reset the origin.
     *
     * @param[in] lat0 latitude at origin (degrees).
     * @param[in] lon0 longitude at origin (degrees).
     * @param[in] h0 height above ellipsoid at origin (meters); default 0.
     *
     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    void Reset(real lat0, real lon0, real h0 = 0);

    /**
     * Convert from geodetic to local cartesian coordinates.
     *
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[in] h height of point above the ellipsoid (meters).
     * @param[out] x local cartesian coordinate (meters).
     * @param[out] y local cartesian coordinate (meters).
     * @param[out] z local cartesian coordinate (meters).
     *
     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    void Forward(real lat, real lon, real h, real& x, real& y, real& z)
      const {
      IntForward(lat, lon, h, x, y, z, NULL);
    }

    /**
     * Convert from geodetic to local cartesian coordinates and return rotation
     * matrix.
     *
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[in] h height of point above the ellipsoid (meters).
     * @param[out] x local cartesian coordinate (meters).
     * @param[out] y local cartesian coordinate (meters).
     * @param[out] z local cartesian coordinate (meters).
     * @param[out] M if the length of the vector is 9, fill with the rotation
     *   matrix in row-major order.
     *
     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
     *
     * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
     * express \e v as \e column vectors in one of two ways
     * - in east, north, up coordinates (where the components are relative to a
     *   local coordinate system at (\e lat, \e lon, \e h)); call this
     *   representation \e v1.
     * - in \e x, \e y, \e z coordinates (where the components are relative to
     *   the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
     *   representation \e v0.
     * .
     * Then we have \e v0 = \e M &sdot; \e v1.
     **********************************************************************/
    void Forward(real lat, real lon, real h, real& x, real& y, real& z,
                 std::vector<real>& M)
      const  {
      if (M.end() == M.begin() + dim2_) {
        real t[dim2_];
        IntForward(lat, lon, h, x, y, z, t);
        std::copy(t, t + dim2_, M.begin());
      } else
        IntForward(lat, lon, h, x, y, z, NULL);
    }

    /**
     * Convert from local cartesian to geodetic coordinates.
     *
     * @param[in] x local cartesian coordinate (meters).
     * @param[in] y local cartesian coordinate (meters).
     * @param[in] z local cartesian coordinate (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] h height of point above the ellipsoid (meters).
     *
     * The value of \e lon returned is in the range [&minus;180&deg;,
     * 180&deg;).
     **********************************************************************/
    void Reverse(real x, real y, real z, real& lat, real& lon, real& h)
      const {
      IntReverse(x, y, z, lat, lon, h, NULL);
    }

    /**
     * Convert from local cartesian to geodetic coordinates and return rotation
     * matrix.
     *
     * @param[in] x local cartesian coordinate (meters).
     * @param[in] y local cartesian coordinate (meters).
     * @param[in] z local cartesian coordinate (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] h height of point above the ellipsoid (meters).
     * @param[out] M if the length of the vector is 9, fill with the rotation
     *   matrix in row-major order.
     *
     * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
     * express \e v as \e column vectors in one of two ways
     * - in east, north, up coordinates (where the components are relative to a
     *   local coordinate system at (\e lat, \e lon, \e h)); call this
     *   representation \e v1.
     * - in \e x, \e y, \e z coordinates (where the components are relative to
     *   the local coordinate system at (\e lat0, \e lon0, \e h0)); call this
     *   representation \e v0.
     * .
     * Then we have \e v1 = <i>M</i><sup>T</sup> &sdot; \e v0, where
     * <i>M</i><sup>T</sup> is the transpose of \e M.
     **********************************************************************/
    void Reverse(real x, real y, real z, real& lat, real& lon, real& h,
                 std::vector<real>& M)
      const {
      if (M.end() == M.begin() + dim2_) {
        real t[dim2_];
        IntReverse(x, y, z, lat, lon, h, t);
        std::copy(t, t + dim2_, M.begin());
      } else
        IntReverse(x, y, z, lat, lon, h, NULL);
    }

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return latitude of the origin (degrees).
     **********************************************************************/
    Math::real LatitudeOrigin() const { return _lat0; }

    /**
     * @return longitude of the origin (degrees).
     **********************************************************************/
    Math::real LongitudeOrigin() const { return _lon0; }

    /**
     * @return height of the origin (meters).
     **********************************************************************/
    Math::real HeightOrigin() const { return _h0; }

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value of \e a inherited from the Geocentric object used in the
     *   constructor.
     **********************************************************************/
    Math::real MajorRadius() const { return _earth.MajorRadius(); }

    /**
     * @return \e f the flattening of the ellipsoid.  This is the value
     *   inherited from the Geocentric object used in the constructor.
     **********************************************************************/
    Math::real Flattening() const { return _earth.Flattening(); }
    ///@}

    /// \cond SKIP
    /**
     * <b>DEPRECATED</b>
     * @return \e r the inverse flattening of the ellipsoid.
     **********************************************************************/
    Math::real InverseFlattening() const
    { return _earth.InverseFlattening(); }
    /// \endcond
  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_LOCALCARTESIAN_HPP