/usr/include/GeographicLib/LambertConformalConic.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 | /**
* \file LambertConformalConic.hpp
* \brief Header for GeographicLib::LambertConformalConic class
*
* Copyright (c) Charles Karney (2010-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP)
#define GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP 1
#include <GeographicLib/Constants.hpp>
namespace GeographicLib {
/**
* \brief Lambert conformal conic projection
*
* Implementation taken from the report,
* - J. P. Snyder,
* <a href="http://pubs.er.usgs.gov/usgspubs/pp/pp1395"> Map Projections: A
* Working Manual</a>, USGS Professional Paper 1395 (1987),
* pp. 107--109.
*
* This is a implementation of the equations in Snyder except that divided
* differences have been used to transform the expressions into ones which
* may be evaluated accurately and that Newton's method is used to invert the
* projection. In this implementation, the projection correctly becomes the
* Mercator projection or the polar stereographic projection when the
* standard latitude is the equator or a pole. The accuracy of the
* projections is about 10 nm (10 nanometers).
*
* The ellipsoid parameters, the standard parallels, and the scale on the
* standard parallels are set in the constructor. Internally, the case with
* two standard parallels is converted into a single standard parallel, the
* latitude of tangency (also the latitude of minimum scale), with a scale
* specified on this parallel. This latitude is also used as the latitude of
* origin which is returned by LambertConformalConic::OriginLatitude. The
* scale on the latitude of origin is given by
* LambertConformalConic::CentralScale. The case with two distinct standard
* parallels where one is a pole is singular and is disallowed. The central
* meridian (which is a trivial shift of the longitude) is specified as the
* \e lon0 argument of the LambertConformalConic::Forward and
* LambertConformalConic::Reverse functions. There is no provision in this
* class for specifying a false easting or false northing or a different
* latitude of origin. However these are can be simply included by the
* calling function. For example the Pennsylvania South state coordinate
* system (<a href="http://www.spatialreference.org/ref/epsg/3364/">
* EPSG:3364</a>) is obtained by:
* \include example-LambertConformalConic.cpp
*
* <a href="ConicProj.1.html">ConicProj</a> is a command-line utility
* providing access to the functionality of LambertConformalConic and
* AlbersEqualArea.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT LambertConformalConic {
private:
typedef Math::real real;
real eps_, epsx_, ahypover_;
real _a, _f, _fm, _e2, _es;
real _sign, _n, _nc, _t0nm1, _scale, _lat0, _k0;
real _scbet0, _tchi0, _scchi0, _psi0, _nrho0, _drhomax;
static const int numit_ = 5;
static inline real hyp(real x) { return Math::hypot(real(1), x); }
// Divided differences
// Definition: Df(x,y) = (f(x)-f(y))/(x-y)
// See:
// W. M. Kahan and R. J. Fateman,
// Symbolic computation of divided differences,
// SIGSAM Bull. 33(3), 7-28 (1999)
// https://dx.doi.org/10.1145/334714.334716
// http://www.cs.berkeley.edu/~fateman/papers/divdiff.pdf
//
// General rules
// h(x) = f(g(x)): Dh(x,y) = Df(g(x),g(y))*Dg(x,y)
// h(x) = f(x)*g(x):
// Dh(x,y) = Df(x,y)*g(x) + Dg(x,y)*f(y)
// = Df(x,y)*g(y) + Dg(x,y)*f(x)
// = Df(x,y)*(g(x)+g(y))/2 + Dg(x,y)*(f(x)+f(y))/2
//
// hyp(x) = sqrt(1+x^2): Dhyp(x,y) = (x+y)/(hyp(x)+hyp(y))
static inline real Dhyp(real x, real y, real hx, real hy)
// hx = hyp(x)
{ return (x + y) / (hx + hy); }
// sn(x) = x/sqrt(1+x^2): Dsn(x,y) = (x+y)/((sn(x)+sn(y))*(1+x^2)*(1+y^2))
static inline real Dsn(real x, real y, real sx, real sy) {
// sx = x/hyp(x)
real t = x * y;
return t > 0 ? (x + y) * Math::sq( (sx * sy)/t ) / (sx + sy) :
(x - y != 0 ? (sx - sy) / (x - y) : 1);
}
// Dlog1p(x,y) = log1p((x-y)/(1+y))/(x-y)
static inline real Dlog1p(real x, real y) {
real t = x - y; if (t < 0) { t = -t; y = x; }
return t ? Math::log1p(t / (1 + y)) / t : 1 / (1 + x);
}
// Dexp(x,y) = exp((x+y)/2) * 2*sinh((x-y)/2)/(x-y)
static inline real Dexp(real x, real y) {
using std::sinh; using std::exp;
real t = (x - y)/2;
return (t ? sinh(t)/t : 1) * exp((x + y)/2);
}
// Dsinh(x,y) = 2*sinh((x-y)/2)/(x-y) * cosh((x+y)/2)
// cosh((x+y)/2) = (c+sinh(x)*sinh(y)/c)/2
// c=sqrt((1+cosh(x))*(1+cosh(y)))
// cosh((x+y)/2) = sqrt( (sinh(x)*sinh(y) + cosh(x)*cosh(y) + 1)/2 )
static inline real Dsinh(real x, real y, real sx, real sy, real cx, real cy)
// sx = sinh(x), cx = cosh(x)
{
// real t = (x - y)/2, c = sqrt((1 + cx) * (1 + cy));
// return (t ? sinh(t)/t : real(1)) * (c + sx * sy / c) /2;
using std::sinh; using std::sqrt;
real t = (x - y)/2;
return (t ? sinh(t)/t : 1) * sqrt((sx * sy + cx * cy + 1) /2);
}
// Dasinh(x,y) = asinh((x-y)*(x+y)/(x*sqrt(1+y^2)+y*sqrt(1+x^2)))/(x-y)
// = asinh((x*sqrt(1+y^2)-y*sqrt(1+x^2)))/(x-y)
static inline real Dasinh(real x, real y, real hx, real hy) {
// hx = hyp(x)
real t = x - y;
return t ?
Math::asinh(x*y > 0 ? t * (x+y) / (x*hy + y*hx) : x*hy - y*hx) / t :
1/hx;
}
// Deatanhe(x,y) = eatanhe((x-y)/(1-e^2*x*y))/(x-y)
inline real Deatanhe(real x, real y) const {
real t = x - y, d = 1 - _e2 * x * y;
return t ? Math::eatanhe(t / d, _es) / t : _e2 / d;
}
void Init(real sphi1, real cphi1, real sphi2, real cphi2, real k1);
public:
/**
* Constructor with a single standard parallel.
*
* @param[in] a equatorial radius of ellipsoid (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @param[in] stdlat standard parallel (degrees), the circle of tangency.
* @param[in] k0 scale on the standard parallel.
* @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k0 is
* not positive.
* @exception GeographicErr if \e stdlat is not in [−90°,
* 90°].
**********************************************************************/
LambertConformalConic(real a, real f, real stdlat, real k0);
/**
* Constructor with two standard parallels.
*
* @param[in] a equatorial radius of ellipsoid (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @param[in] stdlat1 first standard parallel (degrees).
* @param[in] stdlat2 second standard parallel (degrees).
* @param[in] k1 scale on the standard parallels.
* @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k1 is
* not positive.
* @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
* [−90°, 90°], or if either \e stdlat1 or \e
* stdlat2 is a pole and \e stdlat1 is not equal \e stdlat2.
**********************************************************************/
LambertConformalConic(real a, real f, real stdlat1, real stdlat2, real k1);
/**
* Constructor with two standard parallels specified by sines and cosines.
*
* @param[in] a equatorial radius of ellipsoid (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @param[in] sinlat1 sine of first standard parallel.
* @param[in] coslat1 cosine of first standard parallel.
* @param[in] sinlat2 sine of second standard parallel.
* @param[in] coslat2 cosine of second standard parallel.
* @param[in] k1 scale on the standard parallels.
* @exception GeographicErr if \e a, (1 − \e f) \e a, or \e k1 is
* not positive.
* @exception GeographicErr if \e stdlat1 or \e stdlat2 is not in
* [−90°, 90°], or if either \e stdlat1 or \e
* stdlat2 is a pole and \e stdlat1 is not equal \e stdlat2.
*
* This allows parallels close to the poles to be specified accurately.
* This routine computes the latitude of origin and the scale at this
* latitude. In the case where \e lat1 and \e lat2 are different, the
* errors in this routines are as follows: if \e dlat = abs(\e lat2 −
* \e lat1) ≤ 160° and max(abs(\e lat1), abs(\e lat2)) ≤ 90
* − min(0.0002, 2.2 × 10<sup>−6</sup>(180 − \e
* dlat), 6 × 10<sup>−8</sup> <i>dlat</i><sup>2</sup>) (in
* degrees), then the error in the latitude of origin is less than 4.5
* × 10<sup>−14</sup>d and the relative error in the scale is
* less than 7 × 10<sup>−15</sup>.
**********************************************************************/
LambertConformalConic(real a, real f,
real sinlat1, real coslat1,
real sinlat2, real coslat2,
real k1);
/**
* Set the scale for the projection.
*
* @param[in] lat (degrees).
* @param[in] k scale at latitude \e lat (default 1).
* @exception GeographicErr \e k is not positive.
* @exception GeographicErr if \e lat is not in [−90°,
* 90°].
**********************************************************************/
void SetScale(real lat, real k = real(1));
/**
* Forward projection, from geographic to Lambert conformal conic.
*
* @param[in] lon0 central meridian longitude (degrees).
* @param[in] lat latitude of point (degrees).
* @param[in] lon longitude of point (degrees).
* @param[out] x easting of point (meters).
* @param[out] y northing of point (meters).
* @param[out] gamma meridian convergence at point (degrees).
* @param[out] k scale of projection at point.
*
* The latitude origin is given by LambertConformalConic::LatitudeOrigin().
* No false easting or northing is added and \e lat should be in the range
* [−90°, 90°]. The error in the projection is less than
* about 10 nm (10 nanometers), true distance, and the errors in the
* meridian convergence and scale are consistent with this. The values of
* \e x and \e y returned for points which project to infinity (i.e., one
* or both of the poles) will be large but finite.
**********************************************************************/
void Forward(real lon0, real lat, real lon,
real& x, real& y, real& gamma, real& k) const;
/**
* Reverse projection, from Lambert conformal conic to geographic.
*
* @param[in] lon0 central meridian longitude (degrees).
* @param[in] x easting of point (meters).
* @param[in] y northing of point (meters).
* @param[out] lat latitude of point (degrees).
* @param[out] lon longitude of point (degrees).
* @param[out] gamma meridian convergence at point (degrees).
* @param[out] k scale of projection at point.
*
* The latitude origin is given by LambertConformalConic::LatitudeOrigin().
* No false easting or northing is added. The value of \e lon returned is
* in the range [−180°, 180°). The error in the projection
* is less than about 10 nm (10 nanometers), true distance, and the errors
* in the meridian convergence and scale are consistent with this.
**********************************************************************/
void Reverse(real lon0, real x, real y,
real& lat, real& lon, real& gamma, real& k) const;
/**
* LambertConformalConic::Forward without returning the convergence and
* scale.
**********************************************************************/
void Forward(real lon0, real lat, real lon,
real& x, real& y) const {
real gamma, k;
Forward(lon0, lat, lon, x, y, gamma, k);
}
/**
* LambertConformalConic::Reverse without returning the convergence and
* scale.
**********************************************************************/
void Reverse(real lon0, real x, real y,
real& lat, real& lon) const {
real gamma, k;
Reverse(lon0, x, y, lat, lon, gamma, k);
}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
Math::real MajorRadius() const { return _a; }
/**
* @return \e f the flattening of the ellipsoid. This is the
* value used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _f; }
/// \cond SKIP
/**
* <b>DEPRECATED</b>
* @return \e r the inverse flattening of the ellipsoid.
**********************************************************************/
Math::real InverseFlattening() const { return 1/_f; }
/// \endcond
/**
* @return latitude of the origin for the projection (degrees).
*
* This is the latitude of minimum scale and equals the \e stdlat in the
* 1-parallel constructor and lies between \e stdlat1 and \e stdlat2 in the
* 2-parallel constructors.
**********************************************************************/
Math::real OriginLatitude() const { return _lat0; }
/**
* @return central scale for the projection. This is the scale on the
* latitude of origin.
**********************************************************************/
Math::real CentralScale() const { return _k0; }
///@}
/**
* A global instantiation of LambertConformalConic with the WGS84
* ellipsoid, \e stdlat = 0, and \e k0 = 1. This degenerates to the
* Mercator projection.
**********************************************************************/
static const LambertConformalConic& Mercator();
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_LAMBERTCONFORMALCONIC_HPP
|