This file is indexed.

/usr/include/GeographicLib/GravityModel.hpp is in libgeographic-dev 1.45-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
/**
 * \file GravityModel.hpp
 * \brief Header for GeographicLib::GravityModel class
 *
 * Copyright (c) Charles Karney (2011) <charles@karney.com> and licensed under
 * the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_GRAVITYMODEL_HPP)
#define GEOGRAPHICLIB_GRAVITYMODEL_HPP 1

#include <GeographicLib/Constants.hpp>
#include <GeographicLib/NormalGravity.hpp>
#include <GeographicLib/SphericalHarmonic.hpp>
#include <GeographicLib/SphericalHarmonic1.hpp>

#if defined(_MSC_VER)
// Squelch warnings about dll vs vector
#  pragma warning (push)
#  pragma warning (disable: 4251)
#endif

namespace GeographicLib {

  class GravityCircle;

  /**
   * \brief Model of the earth's gravity field
   *
   * Evaluate the earth's gravity field according to a model.  The supported
   * models treat only the gravitational field exterior to the mass of the
   * earth.  When computing the field at points near (but above) the surface of
   * the earth a small correction can be applied to account for the mass of the
   * atomsphere above the point in question; see \ref gravityatmos.
   * Determining the height of the geoid above the ellipsoid entails correcting
   * for the mass of the earth above the geoid.  The egm96 and egm2008 include
   * separate correction terms to account for this mass.
   *
   * Definitions and terminology (from Heiskanen and Moritz, Sec 2-13):
   * - \e V = gravitational potential;
   * - &Phi; = rotational potential;
   * - \e W = \e V + &Phi; = \e T + \e U = total potential;
   * - <i>V</i><sub>0</sub> = normal gravitation potential;
   * - \e U = <i>V</i><sub>0</sub> + &Phi; = total normal potential;
   * - \e T = \e W &minus; \e U = \e V &minus; <i>V</i><sub>0</sub> = anomalous
   *   or disturbing potential;
   * - <b>g</b> = &nabla;\e W = <b>&gamma;</b> + <b>&delta;</b>;
   * - <b>f</b> = &nabla;&Phi;;
   * - <b>&Gamma;</b> = &nabla;<i>V</i><sub>0</sub>;
   * - <b>&gamma;</b> = &nabla;\e U;
   * - <b>&delta;</b> = &nabla;\e T = gravity disturbance vector
   *   = <b>g</b><sub><i>P</i></sub> &minus; <b>&gamma;</b><sub><i>P</i></sub>;
   * - &delta;\e g = gravity disturbance = <i>g</i><sub><i>P</i></sub> &minus;
   *   &gamma;<sub><i>P</i></sub>;
   * - &Delta;<b>g</b> = gravity anomaly vector = <b>g</b><sub><i>P</i></sub>
   *   &minus; <b>&gamma;</b><sub><i>Q</i></sub>; here the line \e PQ is
   *   perpendicular to ellipsoid and the potential at \e P equals the normal
   *   potential at \e Q;
   * - &Delta;\e g = gravity anomaly = <i>g</i><sub><i>P</i></sub> &minus;
   *   &gamma;<sub><i>Q</i></sub>;
   * - (&xi;, &eta;) deflection of the vertical, the difference in
   *   directions of <b>g</b><sub><i>P</i></sub> and
   *   <b>&gamma;</b><sub><i>Q</i></sub>, &xi; = NS, &eta; = EW.
   * - \e X, \e Y, \e Z, geocentric coordinates;
   * - \e x, \e y, \e z, local cartesian coordinates used to denote the east,
   *   north and up directions.
   *
   * See \ref gravity for details of how to install the gravity models and the
   * data format.
   *
   * References:
   * - W. A. Heiskanen and H. Moritz, Physical Geodesy (Freeman, San
   *   Francisco, 1967).
   *
   * Example of use:
   * \include example-GravityModel.cpp
   *
   * <a href="Gravity.1.html">Gravity</a> is a command-line utility providing
   * access to the functionality of GravityModel and GravityCircle.
   **********************************************************************/

  class GEOGRAPHICLIB_EXPORT GravityModel {
  private:
    typedef Math::real real;
    friend class GravityCircle;
    static const int idlength_ = 8;
    std::string _name, _dir, _description, _date, _filename, _id;
    real _amodel, _GMmodel, _zeta0, _corrmult;
    SphericalHarmonic::normalization _norm;
    NormalGravity _earth;
    std::vector<real> _Cx, _Sx, _CC, _CS, _zonal;
    real _dzonal0;              // A left over contribution to _zonal.
    SphericalHarmonic _gravitational;
    SphericalHarmonic1 _disturbing;
    SphericalHarmonic _correction;
    void ReadMetadata(const std::string& name);
    Math::real InternalT(real X, real Y, real Z,
                         real& deltaX, real& deltaY, real& deltaZ,
                         bool gradp, bool correct) const;
    GravityModel(const GravityModel&); // copy constructor not allowed
    GravityModel& operator=(const GravityModel&); // nor copy assignment

    enum captype {
      CAP_NONE   = 0U,
      CAP_G      = 1U<<0,       // implies potentials W and V
      CAP_T      = 1U<<1,
      CAP_DELTA  = 1U<<2 | CAP_T, // delta implies T?
      CAP_C      = 1U<<3,
      CAP_GAMMA0 = 1U<<4,
      CAP_GAMMA  = 1U<<5,
      CAP_ALL    = 0x3FU,
    };

  public:

    /**
     * Bit masks for the capabilities to be given to the GravityCircle object
     * produced by Circle.
     **********************************************************************/
    enum mask {
      /**
       * No capabilities.
       * @hideinitializer
       **********************************************************************/
      NONE = 0U,
      /**
       * Allow calls to GravityCircle::Gravity, GravityCircle::W, and
       * GravityCircle::V.
       * @hideinitializer
       **********************************************************************/
      GRAVITY = CAP_G,
      /**
       * Allow calls to GravityCircle::Disturbance and GravityCircle::T.
       * @hideinitializer
       **********************************************************************/
      DISTURBANCE = CAP_DELTA,
      /**
       * Allow calls to GravityCircle::T(real lon) (i.e., computing the
       * disturbing potential and not the gravity disturbance vector).
       * @hideinitializer
       **********************************************************************/
      DISTURBING_POTENTIAL = CAP_T,
      /**
       * Allow calls to GravityCircle::SphericalAnomaly.
       * @hideinitializer
       **********************************************************************/
      SPHERICAL_ANOMALY = CAP_DELTA | CAP_GAMMA,
      /**
       * Allow calls to GravityCircle::GeoidHeight.
       * @hideinitializer
       **********************************************************************/
      GEOID_HEIGHT = CAP_T | CAP_C | CAP_GAMMA0,
      /**
       * All capabilities.
       * @hideinitializer
       **********************************************************************/
      ALL = CAP_ALL,
    };
    /** \name Setting up the gravity model
     **********************************************************************/
    ///@{
    /**
     * Construct a gravity model.
     *
     * @param[in] name the name of the model.
     * @param[in] path (optional) directory for data file.
     * @exception GeographicErr if the data file cannot be found, is
     *   unreadable, or is corrupt.
     * @exception std::bad_alloc if the memory necessary for storing the model
     *   can't be allocated.
     *
     * A filename is formed by appending ".egm" (World Gravity Model) to the
     * name.  If \e path is specified (and is non-empty), then the file is
     * loaded from directory, \e path.  Otherwise the path is given by
     * DefaultGravityPath().
     *
     * This file contains the metadata which specifies the properties of the
     * model.  The coefficients for the spherical harmonic sums are obtained
     * from a file obtained by appending ".cof" to metadata file (so the
     * filename ends in ".egm.cof").
     **********************************************************************/
    explicit GravityModel(const std::string& name,
                          const std::string& path = "");
    ///@}

    /** \name Compute gravity in geodetic coordinates
     **********************************************************************/
    ///@{
    /**
     * Evaluate the gravity at an arbitrary point above (or below) the
     * ellipsoid.
     *
     * @param[in] lat the geographic latitude (degrees).
     * @param[in] lon the geographic longitude (degrees).
     * @param[in] h the height above the ellipsoid (meters).
     * @param[out] gx the easterly component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gy the northerly component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gz the upward component of the acceleration
     *   (m s<sup>&minus;2</sup>); this is usually negative.
     * @return \e W the sum of the gravitational and centrifugal potentials.
     *
     * The function includes the effects of the earth's rotation.
     **********************************************************************/
    Math::real Gravity(real lat, real lon, real h,
                       real& gx, real& gy, real& gz) const;

    /**
     * Evaluate the gravity disturbance vector at an arbitrary point above (or
     * below) the ellipsoid.
     *
     * @param[in] lat the geographic latitude (degrees).
     * @param[in] lon the geographic longitude (degrees).
     * @param[in] h the height above the ellipsoid (meters).
     * @param[out] deltax the easterly component of the disturbance vector
     *   (m s<sup>&minus;2</sup>).
     * @param[out] deltay the northerly component of the disturbance vector
     *   (m s<sup>&minus;2</sup>).
     * @param[out] deltaz the upward component of the disturbance vector
     *   (m s<sup>&minus;2</sup>).
     * @return \e T the corresponding disturbing potential.
     **********************************************************************/
    Math::real Disturbance(real lat, real lon, real h,
                           real& deltax, real& deltay, real& deltaz)
      const;

    /**
     * Evaluate the geoid height.
     *
     * @param[in] lat the geographic latitude (degrees).
     * @param[in] lon the geographic longitude (degrees).
     * @return \e N the height of the geoid above the ReferenceEllipsoid()
     *   (meters).
     *
     * This calls NormalGravity::U for ReferenceEllipsoid().  Some
     * approximations are made in computing the geoid height so that the
     * results of the NGA codes are reproduced accurately.  Details are given
     * in \ref gravitygeoid.
     **********************************************************************/
    Math::real GeoidHeight(real lat, real lon) const;

    /**
     * Evaluate the components of the gravity anomaly vector using the
     * spherical approximation.
     *
     * @param[in] lat the geographic latitude (degrees).
     * @param[in] lon the geographic longitude (degrees).
     * @param[in] h the height above the ellipsoid (meters).
     * @param[out] Dg01 the gravity anomaly (m s<sup>&minus;2</sup>).
     * @param[out] xi the northerly component of the deflection of the vertical
     *  (degrees).
     * @param[out] eta the easterly component of the deflection of the vertical
     *  (degrees).
     *
     * The spherical approximation (see Heiskanen and Moritz, Sec 2-14) is used
     * so that the results of the NGA codes are reproduced accurately.
     * approximations used here.  Details are given in \ref gravitygeoid.
     **********************************************************************/
    void SphericalAnomaly(real lat, real lon, real h,
                          real& Dg01, real& xi, real& eta) const;
    ///@}

    /** \name Compute gravity in geocentric coordinates
     **********************************************************************/
    ///@{
    /**
     * Evaluate the components of the acceleration due to gravity and the
     * centrifugal acceleration in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @param[out] gX the \e X component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gY the \e Y component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gZ the \e Z component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @return \e W = \e V + &Phi; the sum of the gravitational and
     *   centrifugal potentials (m<sup>2</sup> s<sup>&minus;2</sup>).
     *
     * This calls NormalGravity::U for  ReferenceEllipsoid().
     **********************************************************************/
    Math::real W(real X, real Y, real Z,
                 real& gX, real& gY, real& gZ) const;

    /**
     * Evaluate the components of the acceleration due to gravity in geocentric
     * coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @param[out] GX the \e X component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] GY the \e Y component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] GZ the \e Z component of the acceleration
     *   (m s<sup>&minus;2</sup>).
     * @return \e V = \e W - &Phi; the gravitational potential
     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
     **********************************************************************/
    Math::real V(real X, real Y, real Z,
                 real& GX, real& GY, real& GZ) const;

    /**
     * Evaluate the components of the gravity disturbance in geocentric
     * coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @param[out] deltaX the \e X component of the gravity disturbance
     *   (m s<sup>&minus;2</sup>).
     * @param[out] deltaY the \e Y component of the gravity disturbance
     *   (m s<sup>&minus;2</sup>).
     * @param[out] deltaZ the \e Z component of the gravity disturbance
     *   (m s<sup>&minus;2</sup>).
     * @return \e T = \e W - \e U the disturbing potential (also called the
     *   anomalous potential) (m<sup>2</sup> s<sup>&minus;2</sup>).
     **********************************************************************/
    Math::real T(real X, real Y, real Z,
                 real& deltaX, real& deltaY, real& deltaZ) const
    { return InternalT(X, Y, Z, deltaX, deltaY, deltaZ, true, true); }

    /**
     * Evaluate disturbing potential in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @return \e T = \e W - \e U the disturbing potential (also called the
     *   anomalous potential) (m<sup>2</sup> s<sup>&minus;2</sup>).
     **********************************************************************/
    Math::real T(real X, real Y, real Z) const {
      real dummy;
      return InternalT(X, Y, Z, dummy, dummy, dummy, false, true);
    }

    /**
     * Evaluate the components of the acceleration due to normal gravity and
     * the centrifugal acceleration in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[in] Z geocentric coordinate of point (meters).
     * @param[out] gammaX the \e X component of the normal acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gammaY the \e Y component of the normal acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] gammaZ the \e Z component of the normal acceleration
     *   (m s<sup>&minus;2</sup>).
     * @return \e U = <i>V</i><sub>0</sub> + &Phi; the sum of the
     *   normal gravitational and centrifugal potentials
     *   (m<sup>2</sup> s<sup>&minus;2</sup>).
     *
     * This calls NormalGravity::U for  ReferenceEllipsoid().
     **********************************************************************/
    Math::real U(real X, real Y, real Z,
                 real& gammaX, real& gammaY, real& gammaZ) const
    { return _earth.U(X, Y, Z, gammaX, gammaY, gammaZ); }

    /**
     * Evaluate the centrifugal acceleration in geocentric coordinates.
     *
     * @param[in] X geocentric coordinate of point (meters).
     * @param[in] Y geocentric coordinate of point (meters).
     * @param[out] fX the \e X component of the centrifugal acceleration
     *   (m s<sup>&minus;2</sup>).
     * @param[out] fY the \e Y component of the centrifugal acceleration
     *   (m s<sup>&minus;2</sup>).
     * @return &Phi; the centrifugal potential (m<sup>2</sup>
     * s<sup>&minus;2</sup>).
     *
     * This calls NormalGravity::Phi for  ReferenceEllipsoid().
     **********************************************************************/
    Math::real Phi(real X, real Y, real& fX, real& fY) const
    { return _earth.Phi(X, Y, fX, fY); }
    ///@}

    /** \name Compute gravity on a circle of constant latitude
     **********************************************************************/
    ///@{
    /**
     * Create a GravityCircle object to allow the gravity field at many points
     * with constant \e lat and \e h and varying \e lon to be computed
     * efficiently.
     *
     * @param[in] lat latitude of the point (degrees).
     * @param[in] h the height of the point above the ellipsoid (meters).
     * @param[in] caps bitor'ed combination of GravityModel::mask values
     *   specifying the capabilities of the resulting GravityCircle object.
     * @exception std::bad_alloc if the memory necessary for creating a
     *   GravityCircle can't be allocated.
     * @return a GravityCircle object whose member functions computes the
     *   gravitational field at a particular values of \e lon.
     *
     * The GravityModel::mask values are
     * - \e caps |= GravityModel::GRAVITY
     * - \e caps |= GravityModel::DISTURBANCE
     * - \e caps |= GravityModel::DISTURBING_POTENTIAL
     * - \e caps |= GravityModel::SPHERICAL_ANOMALY
     * - \e caps |= GravityModel::GEOID_HEIGHT
     * .
     * The default value of \e caps is GravityModel::ALL which turns on all the
     * capabilities.  If an unsupported function is invoked, it will return
     * NaNs.  Note that GravityModel::GEOID_HEIGHT will only be honored if \e h
     * = 0.
     *
     * If the field at several points on a circle of latitude need to be
     * calculated then creating a GravityCircle object and using its member
     * functions will be substantially faster, especially for high-degree
     * models.  See \ref gravityparallel for an example of using GravityCircle
     * (together with OpenMP) to speed up the computation of geoid heights.
     **********************************************************************/
    GravityCircle Circle(real lat, real h, unsigned caps = ALL) const;
    ///@}

    /** \name Inspector functions
     **********************************************************************/
    ///@{

    /**
     * @return the NormalGravity object for the reference ellipsoid.
     **********************************************************************/
    const NormalGravity& ReferenceEllipsoid() const { return _earth; }

    /**
     * @return the description of the gravity model, if available, in the data
     *   file; if absent, return "NONE".
     **********************************************************************/
    const std::string& Description() const { return _description; }

    /**
     * @return date of the model; if absent, return "UNKNOWN".
     **********************************************************************/
    const std::string& DateTime() const { return _date; }

    /**
     * @return full file name used to load the gravity model.
     **********************************************************************/
    const std::string& GravityFile() const { return _filename; }

    /**
     * @return "name" used to load the gravity model (from the first argument
     *   of the constructor, but this may be overridden by the model file).
     **********************************************************************/
    const std::string& GravityModelName() const { return _name; }

    /**
     * @return directory used to load the gravity model.
     **********************************************************************/
    const std::string& GravityModelDirectory() const { return _dir; }

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).
     **********************************************************************/
    Math::real MajorRadius() const { return _earth.MajorRadius(); }

    /**
     * @return \e GM the mass constant of the model (m<sup>3</sup>
     *   s<sup>&minus;2</sup>); this is the product of \e G the gravitational
     *   constant and \e M the mass of the earth (usually including the mass of
     *   the earth's atmosphere).
     **********************************************************************/
    Math::real MassConstant() const { return _GMmodel; }

    /**
     * @return \e GM the mass constant of the ReferenceEllipsoid()
     *   (m<sup>3</sup> s<sup>&minus;2</sup>).
     **********************************************************************/
    Math::real ReferenceMassConstant() const
    { return _earth.MassConstant(); }

    /**
     * @return &omega; the angular velocity of the model and the
     *   ReferenceEllipsoid() (rad s<sup>&minus;1</sup>).
     **********************************************************************/
    Math::real AngularVelocity() const
    { return _earth.AngularVelocity(); }

    /**
     * @return \e f the flattening of the ellipsoid.
     **********************************************************************/
    Math::real Flattening() const { return _earth.Flattening(); }
    ///@}

    /**
     * @return the default path for gravity model data files.
     *
     * This is the value of the environment variable
     * GEOGRAPHICLIB_GRAVITY_PATH, if set; otherwise, it is
     * $GEOGRAPHICLIB_DATA/gravity if the environment variable
     * GEOGRAPHICLIB_DATA is set; otherwise, it is a compile-time default
     * (/usr/local/share/GeographicLib/gravity on non-Windows systems and
     * C:/ProgramData/GeographicLib/gravity on Windows systems).
     **********************************************************************/
    static std::string DefaultGravityPath();

    /**
     * @return the default name for the gravity model.
     *
     * This is the value of the environment variable
     * GEOGRAPHICLIB_GRAVITY_NAME, if set; otherwise, it is "egm96".  The
     * GravityModel class does not use this function; it is just provided as a
     * convenience for a calling program when constructing a GravityModel
     * object.
     **********************************************************************/
    static std::string DefaultGravityName();
  };

} // namespace GeographicLib

#if defined(_MSC_VER)
#  pragma warning (pop)
#endif

#endif  // GEOGRAPHICLIB_GRAVITYMODEL_HPP