/usr/include/GeographicLib/Gnomonic.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | /**
* \file Gnomonic.hpp
* \brief Header for GeographicLib::Gnomonic class
*
* Copyright (c) Charles Karney (2010-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_GNOMONIC_HPP)
#define GEOGRAPHICLIB_GNOMONIC_HPP 1
#include <GeographicLib/Geodesic.hpp>
#include <GeographicLib/GeodesicLine.hpp>
#include <GeographicLib/Constants.hpp>
namespace GeographicLib {
/**
* \brief %Gnomonic projection
*
* %Gnomonic projection centered at an arbitrary position \e C on the
* ellipsoid. This projection is derived in Section 8 of
* - C. F. F. Karney,
* <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
* Algorithms for geodesics</a>,
* J. Geodesy <b>87</b>, 43--55 (2013);
* DOI: <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
* 10.1007/s00190-012-0578-z</a>;
* addenda: <a href="http://geographiclib.sf.net/geod-addenda.html">
* geod-addenda.html</a>.
* .
* The projection of \e P is defined as follows: compute the geodesic line
* from \e C to \e P; compute the reduced length \e m12, geodesic scale \e
* M12, and ρ = <i>m12</i>/\e M12; finally \e x = ρ sin \e azi1; \e
* y = ρ cos \e azi1, where \e azi1 is the azimuth of the geodesic at \e
* C. The Gnomonic::Forward and Gnomonic::Reverse methods also return the
* azimuth \e azi of the geodesic at \e P and reciprocal scale \e rk in the
* azimuthal direction. The scale in the radial direction if
* 1/<i>rk</i><sup>2</sup>.
*
* For a sphere, ρ is reduces to \e a tan(<i>s12</i>/<i>a</i>), where \e
* s12 is the length of the geodesic from \e C to \e P, and the gnomonic
* projection has the property that all geodesics appear as straight lines.
* For an ellipsoid, this property holds only for geodesics interesting the
* centers. However geodesic segments close to the center are approximately
* straight.
*
* Consider a geodesic segment of length \e l. Let \e T be the point on the
* geodesic (extended if necessary) closest to \e C the center of the
* projection and \e t be the distance \e CT. To lowest order, the maximum
* deviation (as a true distance) of the corresponding gnomonic line segment
* (i.e., with the same end points) from the geodesic is<br>
* <br>
* (<i>K</i>(<i>T</i>) - <i>K</i>(<i>C</i>))
* <i>l</i><sup>2</sup> \e t / 32.<br>
* <br>
* where \e K is the Gaussian curvature.
*
* This result applies for any surface. For an ellipsoid of revolution,
* consider all geodesics whose end points are within a distance \e r of \e
* C. For a given \e r, the deviation is maximum when the latitude of \e C
* is 45°, when endpoints are a distance \e r away, and when their
* azimuths from the center are ± 45° or ± 135°.
* To lowest order in \e r and the flattening \e f, the deviation is \e f
* (<i>r</i>/2<i>a</i>)<sup>3</sup> \e r.
*
* The conversions all take place using a Geodesic object (by default
* Geodesic::WGS84()). For more information on geodesics see \ref geodesic.
*
* <b>CAUTION:</b> The definition of this projection for a sphere is
* standard. However, there is no standard for how it should be extended to
* an ellipsoid. The choices are:
* - Declare that the projection is undefined for an ellipsoid.
* - Project to a tangent plane from the center of the ellipsoid. This
* causes great ellipses to appear as straight lines in the projection;
* i.e., it generalizes the spherical great circle to a great ellipse.
* This was proposed by independently by Bowring and Williams in 1997.
* - Project to the conformal sphere with the constant of integration chosen
* so that the values of the latitude match for the center point and
* perform a central projection onto the plane tangent to the conformal
* sphere at the center point. This causes normal sections through the
* center point to appear as straight lines in the projection; i.e., it
* generalizes the spherical great circle to a normal section. This was
* proposed by I. G. Letoval'tsev, Generalization of the gnomonic
* projection for a spheroid and the principal geodetic problems involved
* in the alignment of surface routes, Geodesy and Aerophotography (5),
* 271--274 (1963).
* - The projection given here. This causes geodesics close to the center
* point to appear as straight lines in the projection; i.e., it
* generalizes the spherical great circle to a geodesic.
*
* Example of use:
* \include example-Gnomonic.cpp
*
* <a href="GeodesicProj.1.html">GeodesicProj</a> is a command-line utility
* providing access to the functionality of AzimuthalEquidistant, Gnomonic,
* and CassiniSoldner.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Gnomonic {
private:
typedef Math::real real;
real eps0_, eps_;
Geodesic _earth;
real _a, _f;
static const int numit_ = 10;
public:
/**
* Constructor for Gnomonic.
*
* @param[in] earth the Geodesic object to use for geodesic calculations.
* By default this uses the WGS84 ellipsoid.
**********************************************************************/
explicit Gnomonic(const Geodesic& earth = Geodesic::WGS84());
/**
* Forward projection, from geographic to gnomonic.
*
* @param[in] lat0 latitude of center point of projection (degrees).
* @param[in] lon0 longitude of center point of projection (degrees).
* @param[in] lat latitude of point (degrees).
* @param[in] lon longitude of point (degrees).
* @param[out] x easting of point (meters).
* @param[out] y northing of point (meters).
* @param[out] azi azimuth of geodesic at point (degrees).
* @param[out] rk reciprocal of azimuthal scale at point.
*
* \e lat0 and \e lat should be in the range [−90°, 90°].
* The scale of the projection is 1/<i>rk</i><sup>2</sup> in the "radial"
* direction, \e azi clockwise from true north, and is 1/\e rk in the
* direction perpendicular to this. If the point lies "over the horizon",
* i.e., if \e rk ≤ 0, then NaNs are returned for \e x and \e y (the
* correct values are returned for \e azi and \e rk). A call to Forward
* followed by a call to Reverse will return the original (\e lat, \e lon)
* (to within roundoff) provided the point in not over the horizon.
**********************************************************************/
void Forward(real lat0, real lon0, real lat, real lon,
real& x, real& y, real& azi, real& rk) const;
/**
* Reverse projection, from gnomonic to geographic.
*
* @param[in] lat0 latitude of center point of projection (degrees).
* @param[in] lon0 longitude of center point of projection (degrees).
* @param[in] x easting of point (meters).
* @param[in] y northing of point (meters).
* @param[out] lat latitude of point (degrees).
* @param[out] lon longitude of point (degrees).
* @param[out] azi azimuth of geodesic at point (degrees).
* @param[out] rk reciprocal of azimuthal scale at point.
*
* \e lat0 should be in the range [−90°, 90°]. \e lat will
* be in the range [−90°, 90°] and \e lon will be in the
* range [−180°, 180°). The scale of the projection is
* 1/<i>rk</i><sup>2</sup> in the "radial" direction, \e azi clockwise from
* true north, and is 1/\e rk in the direction perpendicular to this. Even
* though all inputs should return a valid \e lat and \e lon, it's possible
* that the procedure fails to converge for very large \e x or \e y; in
* this case NaNs are returned for all the output arguments. A call to
* Reverse followed by a call to Forward will return the original (\e x, \e
* y) (to roundoff).
**********************************************************************/
void Reverse(real lat0, real lon0, real x, real y,
real& lat, real& lon, real& azi, real& rk) const;
/**
* Gnomonic::Forward without returning the azimuth and scale.
**********************************************************************/
void Forward(real lat0, real lon0, real lat, real lon,
real& x, real& y) const {
real azi, rk;
Forward(lat0, lon0, lat, lon, x, y, azi, rk);
}
/**
* Gnomonic::Reverse without returning the azimuth and scale.
**********************************************************************/
void Reverse(real lat0, real lon0, real x, real y,
real& lat, real& lon) const {
real azi, rk;
Reverse(lat0, lon0, x, y, lat, lon, azi, rk);
}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value inherited from the Geodesic object used in the constructor.
**********************************************************************/
Math::real MajorRadius() const { return _earth.MajorRadius(); }
/**
* @return \e f the flattening of the ellipsoid. This is the value
* inherited from the Geodesic object used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _earth.Flattening(); }
///@}
/// \cond SKIP
/**
* <b>DEPRECATED</b>
* @return \e r the inverse flattening of the ellipsoid.
**********************************************************************/
Math::real InverseFlattening() const
{ return _earth.InverseFlattening(); }
/// \endcond
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_GNOMONIC_HPP
|