This file is indexed.

/usr/include/GeographicLib/GeodesicLineExact.hpp is in libgeographic-dev 1.45-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/**
 * \file GeodesicLineExact.hpp
 * \brief Header for GeographicLib::GeodesicLineExact class
 *
 * Copyright (c) Charles Karney (2012-2015) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_GEODESICLINEEXACT_HPP)
#define GEOGRAPHICLIB_GEODESICLINEEXACT_HPP 1

#include <GeographicLib/Constants.hpp>
#include <GeographicLib/GeodesicExact.hpp>
#include <GeographicLib/EllipticFunction.hpp>

namespace GeographicLib {

  /**
   * \brief An exact geodesic line
   *
   * GeodesicLineExact facilitates the determination of a series of points on a
   * single geodesic.  This is a companion to the GeodesicExact class.  For
   * additional information on this class see the documentation on the
   * GeodesicLine class.
   *
   * Example of use:
   * \include example-GeodesicLineExact.cpp
   *
   * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
   * providing access to the functionality of GeodesicExact and
   * GeodesicLineExact (via the -E option).
   **********************************************************************/

  class GEOGRAPHICLIB_EXPORT GeodesicLineExact {
  private:
    typedef Math::real real;
    friend class GeodesicExact;
    static const int nC4_ = GeodesicExact::nC4_;

    real tiny_;
    real _lat1, _lon1, _azi1;
    real _a, _f, _b, _c2, _f1, _e2, _salp0, _calp0, _k2,
      _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1,
      _somg1, _comg1, _cchi1,
      _A4, _B41, _E0, _D0, _H0, _E1, _D1, _H1;
    real _C4a[nC4_];            // all the elements of _C4a are used
    EllipticFunction _E;
    unsigned _caps;

    enum captype {
      CAP_NONE = GeodesicExact::CAP_NONE,
      CAP_E    = GeodesicExact::CAP_E,
      CAP_D    = GeodesicExact::CAP_D,
      CAP_H    = GeodesicExact::CAP_H,
      CAP_C4   = GeodesicExact::CAP_C4,
      CAP_ALL  = GeodesicExact::CAP_ALL,
      CAP_MASK = GeodesicExact::CAP_MASK,
      OUT_ALL  = GeodesicExact::OUT_ALL,
      OUT_MASK = GeodesicExact::OUT_MASK,
    };
  public:

    /**
     * Bit masks for what calculations to do.  They signify to the
     * GeodesicLineExact::GeodesicLineExact constructor and to
     * GeodesicExact::Line what capabilities should be included in the
     * GeodesicLineExact object.  This is merely a duplication of
     * GeodesicExact::mask.
     **********************************************************************/
    enum mask {
      /**
       * No capabilities, no output.
       * @hideinitializer
       **********************************************************************/
      NONE          = GeodesicExact::NONE,
      /**
       * Calculate latitude \e lat2.  (It's not necessary to include this as a
       * capability to GeodesicLineExact because this is included by default.)
       * @hideinitializer
       **********************************************************************/
      LATITUDE      = GeodesicExact::LATITUDE,
      /**
       * Calculate longitude \e lon2.
       * @hideinitializer
       **********************************************************************/
      LONGITUDE     = GeodesicExact::LONGITUDE,
      /**
       * Calculate azimuths \e azi1 and \e azi2.  (It's not necessary to
       * include this as a capability to GeodesicLineExact because this is
       * included by default.)
       * @hideinitializer
       **********************************************************************/
      AZIMUTH       = GeodesicExact::AZIMUTH,
      /**
       * Calculate distance \e s12.
       * @hideinitializer
       **********************************************************************/
      DISTANCE      = GeodesicExact::DISTANCE,
      /**
       * Allow distance \e s12 to be used as input in the direct geodesic
       * problem.
       * @hideinitializer
       **********************************************************************/
      DISTANCE_IN   = GeodesicExact::DISTANCE_IN,
      /**
       * Calculate reduced length \e m12.
       * @hideinitializer
       **********************************************************************/
      REDUCEDLENGTH = GeodesicExact::REDUCEDLENGTH,
      /**
       * Calculate geodesic scales \e M12 and \e M21.
       * @hideinitializer
       **********************************************************************/
      GEODESICSCALE = GeodesicExact::GEODESICSCALE,
      /**
       * Calculate area \e S12.
       * @hideinitializer
       **********************************************************************/
      AREA          = GeodesicExact::AREA,
      /**
       * Unroll \e lon2 in the direct calculation.  (This flag used to be
       * called LONG_NOWRAP.)
       * @hideinitializer
       **********************************************************************/
      LONG_UNROLL = GeodesicExact::LONG_UNROLL,
      /// \cond SKIP
      LONG_NOWRAP   = LONG_UNROLL,
      /// \endcond
      /**
       * All capabilities, calculate everything.  (LONG_UNROLL is not
       * included in this mask.)
       * @hideinitializer
       **********************************************************************/
      ALL           = GeodesicExact::ALL,
    };

    /** \name Constructors
     **********************************************************************/
    ///@{

    /**
     * Constructor for a geodesic line staring at latitude \e lat1, longitude
     * \e lon1, and azimuth \e azi1 (all in degrees).
     *
     * @param[in] g A GeodesicExact object used to compute the necessary
     *   information about the GeodesicLineExact.
     * @param[in] lat1 latitude of point 1 (degrees).
     * @param[in] lon1 longitude of point 1 (degrees).
     * @param[in] azi1 azimuth at point 1 (degrees).
     * @param[in] caps bitor'ed combination of GeodesicLineExact::mask values
     *   specifying the capabilities the GeodesicLineExact object should
     *   possess, i.e., which quantities can be returned in calls to
     *   GeodesicLine::Position.
     *
     * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
     *
     * The GeodesicLineExact::mask values are
     * - \e caps |= GeodesicLineExact::LATITUDE for the latitude \e lat2; this
     *   is added automatically;
     * - \e caps |= GeodesicLineExact::LONGITUDE for the latitude \e lon2;
     * - \e caps |= GeodesicLineExact::AZIMUTH for the latitude \e azi2; this is
     *   added automatically;
     * - \e caps |= GeodesicLineExact::DISTANCE for the distance \e s12;
     * - \e caps |= GeodesicLineExact::REDUCEDLENGTH for the reduced length \e
         m12;
     * - \e caps |= GeodesicLineExact::GEODESICSCALE for the geodesic scales \e
     *   M12 and \e M21;
     * - \e caps |= GeodesicLineExact::AREA for the area \e S12;
     * - \e caps |= GeodesicLineExact::DISTANCE_IN permits the length of the
     *   geodesic to be given in terms of \e s12; without this capability the
     *   length can only be specified in terms of arc length;
     * - \e caps |= GeodesicLineExact::ALL for all of the above.
     * .
     * The default value of \e caps is GeodesicLineExact::ALL.
     *
     * If the point is at a pole, the azimuth is defined by keeping \e lon1
     * fixed, writing \e lat1 = &plusmn;(90&deg; &minus; &epsilon;), and taking
     * the limit &epsilon; &rarr; 0+.
     **********************************************************************/
    GeodesicLineExact(const GeodesicExact& g, real lat1, real lon1, real azi1,
                      unsigned caps = ALL);

    /**
     * A default constructor.  If GeodesicLineExact::Position is called on the
     * resulting object, it returns immediately (without doing any
     * calculations).  The object can be set with a call to
     * GeodesicExact::Line.  Use Init() to test whether object is still in this
     * uninitialized state.
     **********************************************************************/
    GeodesicLineExact() : _caps(0U) {}
    ///@}

    /** \name Position in terms of distance
     **********************************************************************/
    ///@{

    /**
     * Compute the position of point 2 which is a distance \e s12 (meters)
     * from point 1.
     *
     * @param[in] s12 distance between point 1 and point 2 (meters); it can be
     *   signed.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees); requires that the
     *   GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::LONGITUDE.
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] m12 reduced length of geodesic (meters); requires that the
     *   GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::REDUCEDLENGTH.
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless); requires that the GeodesicLineExact object was
     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless); requires that the GeodesicLineExact object was
     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
     *   that the GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::AREA.
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * The values of \e lon2 and \e azi2 returned are in the range
     * [&minus;180&deg;, 180&deg;).
     *
     * The GeodesicLineExact object \e must have been constructed with \e caps
     * |= GeodesicLineExact::DISTANCE_IN; otherwise Math::NaN() is returned and
     * no parameters are set.  Requesting a value which the GeodesicLineExact
     * object is not capable of computing is not an error; the corresponding
     * argument will not be altered.
     *
     * The following functions are overloaded versions of
     * GeodesicLineExact::Position which omit some of the output parameters.
     * Note, however, that the arc length is always computed and returned as
     * the function value.
     **********************************************************************/
    Math::real Position(real s12,
                        real& lat2, real& lon2, real& azi2,
                        real& m12, real& M12, real& M21,
                        real& S12) const {
      real t;
      return GenPosition(false, s12,
                         LATITUDE | LONGITUDE | AZIMUTH |
                         REDUCEDLENGTH | GEODESICSCALE | AREA,
                         lat2, lon2, azi2, t, m12, M12, M21, S12);
    }

    /**
     * See the documentation for GeodesicLineExact::Position.
     **********************************************************************/
    Math::real Position(real s12, real& lat2, real& lon2) const {
      real t;
      return GenPosition(false, s12,
                         LATITUDE | LONGITUDE,
                         lat2, lon2, t, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicLineExact::Position.
     **********************************************************************/
    Math::real Position(real s12, real& lat2, real& lon2,
                        real& azi2) const {
      real t;
      return GenPosition(false, s12,
                         LATITUDE | LONGITUDE | AZIMUTH,
                         lat2, lon2, azi2, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicLineExact::Position.
     **********************************************************************/
    Math::real Position(real s12, real& lat2, real& lon2,
                        real& azi2, real& m12) const {
      real t;
      return GenPosition(false, s12,
                         LATITUDE | LONGITUDE |
                         AZIMUTH | REDUCEDLENGTH,
                         lat2, lon2, azi2, t, m12, t, t, t);
    }

    /**
     * See the documentation for GeodesicLineExact::Position.
     **********************************************************************/
    Math::real Position(real s12, real& lat2, real& lon2,
                        real& azi2, real& M12, real& M21)
      const {
      real t;
      return GenPosition(false, s12,
                         LATITUDE | LONGITUDE |
                         AZIMUTH | GEODESICSCALE,
                         lat2, lon2, azi2, t, t, M12, M21, t);
    }

    /**
     * See the documentation for GeodesicLineExact::Position.
     **********************************************************************/
    Math::real Position(real s12,
                        real& lat2, real& lon2, real& azi2,
                        real& m12, real& M12, real& M21)
      const {
      real t;
      return GenPosition(false, s12,
                         LATITUDE | LONGITUDE | AZIMUTH |
                         REDUCEDLENGTH | GEODESICSCALE,
                         lat2, lon2, azi2, t, m12, M12, M21, t);
    }

    ///@}

    /** \name Position in terms of arc length
     **********************************************************************/
    ///@{

    /**
     * Compute the position of point 2 which is an arc length \e a12 (degrees)
     * from point 1.
     *
     * @param[in] a12 arc length between point 1 and point 2 (degrees); it can
     *   be signed.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees); requires that the
     *   GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::LONGITUDE.
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] s12 distance between point 1 and point 2 (meters); requires
     *   that the GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::DISTANCE.
     * @param[out] m12 reduced length of geodesic (meters); requires that the
     *   GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::REDUCEDLENGTH.
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless); requires that the GeodesicLineExact object was
     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless); requires that the GeodesicLineExact object was
     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
     *   that the GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::AREA.
     *
     * The values of \e lon2 and \e azi2 returned are in the range
     * [&minus;180&deg;, 180&deg;).
     *
     * Requesting a value which the GeodesicLineExact object is not capable of
     * computing is not an error; the corresponding argument will not be
     * altered.
     *
     * The following functions are overloaded versions of
     * GeodesicLineExact::ArcPosition which omit some of the output parameters.
     **********************************************************************/
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
                     real& s12, real& m12, real& M12, real& M21,
                     real& S12) const {
      GenPosition(true, a12,
                  LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
                  REDUCEDLENGTH | GEODESICSCALE | AREA,
                  lat2, lon2, azi2, s12, m12, M12, M21, S12);
    }

    /**
     * See the documentation for GeodesicLineExact::ArcPosition.
     **********************************************************************/
    void ArcPosition(real a12, real& lat2, real& lon2)
      const {
      real t;
      GenPosition(true, a12,
                  LATITUDE | LONGITUDE,
                  lat2, lon2, t, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicLineExact::ArcPosition.
     **********************************************************************/
    void ArcPosition(real a12,
                     real& lat2, real& lon2, real& azi2)
      const {
      real t;
      GenPosition(true, a12,
                  LATITUDE | LONGITUDE | AZIMUTH,
                  lat2, lon2, azi2, t, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicLineExact::ArcPosition.
     **********************************************************************/
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
                     real& s12) const {
      real t;
      GenPosition(true, a12,
                  LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
                  lat2, lon2, azi2, s12, t, t, t, t);
    }

    /**
     * See the documentation for GeodesicLineExact::ArcPosition.
     **********************************************************************/
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
                     real& s12, real& m12) const {
      real t;
      GenPosition(true, a12,
                  LATITUDE | LONGITUDE | AZIMUTH |
                  DISTANCE | REDUCEDLENGTH,
                  lat2, lon2, azi2, s12, m12, t, t, t);
    }

    /**
     * See the documentation for GeodesicLineExact::ArcPosition.
     **********************************************************************/
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
                     real& s12, real& M12, real& M21)
      const {
      real t;
      GenPosition(true, a12,
                  LATITUDE | LONGITUDE | AZIMUTH |
                  DISTANCE | GEODESICSCALE,
                  lat2, lon2, azi2, s12, t, M12, M21, t);
    }

    /**
     * See the documentation for GeodesicLineExact::ArcPosition.
     **********************************************************************/
    void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
                     real& s12, real& m12, real& M12, real& M21)
      const {
      real t;
      GenPosition(true, a12,
                  LATITUDE | LONGITUDE | AZIMUTH |
                  DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
                  lat2, lon2, azi2, s12, m12, M12, M21, t);
    }
    ///@}

    /** \name The general position function.
     **********************************************************************/
    ///@{

    /**
     * The general position function.  GeodesicLineExact::Position and
     * GeodesicLineExact::ArcPosition are defined in terms of this function.
     *
     * @param[in] arcmode boolean flag determining the meaning of the second
     *   parameter; if arcmode is false, then the GeodesicLineExact object must
     *   have been constructed with \e caps |= GeodesicLineExact::DISTANCE_IN.
     * @param[in] s12_a12 if \e arcmode is false, this is the distance between
     *   point 1 and point 2 (meters); otherwise it is the arc length between
     *   point 1 and point 2 (degrees); it can be signed.
     * @param[in] outmask a bitor'ed combination of GeodesicLineExact::mask
     *   values specifying which of the following parameters should be set.
     * @param[out] lat2 latitude of point 2 (degrees).
     * @param[out] lon2 longitude of point 2 (degrees); requires that the
     *   GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::LONGITUDE.
     * @param[out] azi2 (forward) azimuth at point 2 (degrees).
     * @param[out] s12 distance between point 1 and point 2 (meters); requires
     *   that the GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::DISTANCE.
     * @param[out] m12 reduced length of geodesic (meters); requires that the
     *   GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::REDUCEDLENGTH.
     * @param[out] M12 geodesic scale of point 2 relative to point 1
     *   (dimensionless); requires that the GeodesicLineExact object was
     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
     * @param[out] M21 geodesic scale of point 1 relative to point 2
     *   (dimensionless); requires that the GeodesicLineExact object was
     *   constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
     * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
     *   that the GeodesicLineExact object was constructed with \e caps |=
     *   GeodesicLineExact::AREA.
     * @return \e a12 arc length of between point 1 and point 2 (degrees).
     *
     * The GeodesicLineExact::mask values possible for \e outmask are
     * - \e outmask |= GeodesicLineExact::LATITUDE for the latitude \e lat2;
     * - \e outmask |= GeodesicLineExact::LONGITUDE for the latitude \e lon2;
     * - \e outmask |= GeodesicLineExact::AZIMUTH for the latitude \e azi2;
     * - \e outmask |= GeodesicLineExact::DISTANCE for the distance \e s12;
     * - \e outmask |= GeodesicLineExact::REDUCEDLENGTH for the reduced length
     *   \e m12;
     * - \e outmask |= GeodesicLineExact::GEODESICSCALE for the geodesic scales
     *   \e M12 and \e M21;
     * - \e outmask |= GeodesicLineExact::AREA for the area \e S12;
     * - \e outmask |= GeodesicLineExact::ALL for all of the above;
     * - \e outmask |= GeodesicLineExact::LONG_UNROLL to unroll \e lon2 instead
     *   of wrapping it into the range [&minus;180&deg;, 180&deg;).
     * .
     * Requesting a value which the GeodesicLineExact object is not capable of
     * computing is not an error; the corresponding argument will not be
     * altered.  Note, however, that the arc length is always computed and
     * returned as the function value.
     *
     * With the GeodesicLineExact::LONG_UNROLL bit set, the quantity \e lon2
     * &minus; \e lon1 indicates how many times and in what sense the geodesic
     * encircles the ellipsoid.
     **********************************************************************/
    Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
                           real& lat2, real& lon2, real& azi2,
                           real& s12, real& m12, real& M12, real& M21,
                           real& S12) const;

    ///@}

    /** \name Inspector functions
     **********************************************************************/
    ///@{

    /**
     * @return true if the object has been initialized.
     **********************************************************************/
    bool Init() const { return _caps != 0U; }

    /**
     * @return \e lat1 the latitude of point 1 (degrees).
     **********************************************************************/
    Math::real Latitude() const
    { return Init() ? _lat1 : Math::NaN(); }

    /**
     * @return \e lon1 the longitude of point 1 (degrees).
     **********************************************************************/
    Math::real Longitude() const
    { return Init() ? _lon1 : Math::NaN(); }

    /**
     * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
     **********************************************************************/
    Math::real Azimuth() const
    { return Init() ? _azi1 : Math::NaN(); }

    /**
     * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
     *   the equator in a northward direction.
     *
     * The result lies in [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    Math::real EquatorialAzimuth() const {
      using std::atan2;
      return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN();
    }

    /**
     * @return \e a1 the arc length (degrees) between the northward equatorial
     *   crossing and point 1.
     *
     * The result lies in (&minus;180&deg;, 180&deg;].
     **********************************************************************/
    Math::real EquatorialArc() const {
      using std::atan2;
      return Init() ? atan2(_ssig1, _csig1) / Math::degree() : Math::NaN();
    }

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value inherited from the GeodesicExact object used in the
     *   constructor.
     **********************************************************************/
    Math::real MajorRadius() const
    { return Init() ? _a : Math::NaN(); }

    /**
     * @return \e f the flattening of the ellipsoid.  This is the value
     *   inherited from the GeodesicExact object used in the constructor.
     **********************************************************************/
    Math::real Flattening() const
    { return Init() ? _f : Math::NaN(); }

    /// \cond SKIP
    /**
     * <b>DEPRECATED</b>
     * @return \e r the inverse flattening of the ellipsoid.
     **********************************************************************/
    Math::real InverseFlattening() const
    { return Init() ? 1/_f : Math::NaN(); }
    /// \endcond

    /**
     * @return \e caps the computational capabilities that this object was
     *   constructed with.  LATITUDE and AZIMUTH are always included.
     **********************************************************************/
    unsigned Capabilities() const { return _caps; }

    /**
     * @param[in] testcaps a set of bitor'ed GeodesicLineExact::mask values.
     * @return true if the GeodesicLineExact object has all these capabilities.
     **********************************************************************/
    bool Capabilities(unsigned testcaps) const {
      testcaps &= OUT_ALL;
      return (_caps & testcaps) == testcaps;
    }
    ///@}

  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_GEODESICLINEEXACT_HPP