/usr/include/GeographicLib/Geodesic.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 | /**
* \file Geodesic.hpp
* \brief Header for GeographicLib::Geodesic class
*
* Copyright (c) Charles Karney (2009-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_GEODESIC_HPP)
#define GEOGRAPHICLIB_GEODESIC_HPP 1
#include <GeographicLib/Constants.hpp>
#if !defined(GEOGRAPHICLIB_GEODESIC_ORDER)
/**
* The order of the expansions used by Geodesic.
* GEOGRAPHICLIB_GEODESIC_ORDER can be set to any integer in [3, 8].
**********************************************************************/
# define GEOGRAPHICLIB_GEODESIC_ORDER \
(GEOGRAPHICLIB_PRECISION == 2 ? 6 : \
(GEOGRAPHICLIB_PRECISION == 1 ? 3 : \
(GEOGRAPHICLIB_PRECISION == 3 ? 7 : 8)))
#endif
namespace GeographicLib {
class GeodesicLine;
/**
* \brief %Geodesic calculations
*
* The shortest path between two points on a ellipsoid at (\e lat1, \e lon1)
* and (\e lat2, \e lon2) is called the geodesic. Its length is \e s12 and
* the geodesic from point 1 to point 2 has azimuths \e azi1 and \e azi2 at
* the two end points. (The azimuth is the heading measured clockwise from
* north. \e azi2 is the "forward" azimuth, i.e., the heading that takes you
* beyond point 2 not back to point 1.) In the figure below, latitude if
* labeled φ, longitude λ (with λ<sub>12</sub> =
* λ<sub>2</sub> − λ<sub>1</sub>), and azimuth α.
*
* <img src="http://upload.wikimedia.org/wikipedia/commons/c/cb/Geodesic_problem_on_an_ellipsoid.svg" width=250 alt="spheroidal triangle">
*
* Given \e lat1, \e lon1, \e azi1, and \e s12, we can determine \e lat2, \e
* lon2, and \e azi2. This is the \e direct geodesic problem and its
* solution is given by the function Geodesic::Direct. (If \e s12 is
* sufficiently large that the geodesic wraps more than halfway around the
* earth, there will be another geodesic between the points with a smaller \e
* s12.)
*
* Given \e lat1, \e lon1, \e lat2, and \e lon2, we can determine \e azi1, \e
* azi2, and \e s12. This is the \e inverse geodesic problem, whose solution
* is given by Geodesic::Inverse. Usually, the solution to the inverse
* problem is unique. In cases where there are multiple solutions (all with
* the same \e s12, of course), all the solutions can be easily generated
* once a particular solution is provided.
*
* The standard way of specifying the direct problem is the specify the
* distance \e s12 to the second point. However it is sometimes useful
* instead to specify the arc length \e a12 (in degrees) on the auxiliary
* sphere. This is a mathematical construct used in solving the geodesic
* problems. The solution of the direct problem in this form is provided by
* Geodesic::ArcDirect. An arc length in excess of 180° indicates that
* the geodesic is not a shortest path. In addition, the arc length between
* an equatorial crossing and the next extremum of latitude for a geodesic is
* 90°.
*
* This class can also calculate several other quantities related to
* geodesics. These are:
* - <i>reduced length</i>. If we fix the first point and increase \e azi1
* by \e dazi1 (radians), the second point is displaced \e m12 \e dazi1 in
* the direction \e azi2 + 90°. The quantity \e m12 is called
* the "reduced length" and is symmetric under interchange of the two
* points. On a curved surface the reduced length obeys a symmetry
* relation, \e m12 + \e m21 = 0. On a flat surface, we have \e m12 = \e
* s12. The ratio <i>s12</i>/\e m12 gives the azimuthal scale for an
* azimuthal equidistant projection.
* - <i>geodesic scale</i>. Consider a reference geodesic and a second
* geodesic parallel to this one at point 1 and separated by a small
* distance \e dt. The separation of the two geodesics at point 2 is \e
* M12 \e dt where \e M12 is called the "geodesic scale". \e M21 is
* defined similarly (with the geodesics being parallel at point 2). On a
* flat surface, we have \e M12 = \e M21 = 1. The quantity 1/\e M12 gives
* the scale of the Cassini-Soldner projection.
* - <i>area</i>. The area between the geodesic from point 1 to point 2 and
* the equation is represented by \e S12; it is the area, measured
* counter-clockwise, of the geodesic quadrilateral with corners
* (<i>lat1</i>,<i>lon1</i>), (0,<i>lon1</i>), (0,<i>lon2</i>), and
* (<i>lat2</i>,<i>lon2</i>). It can be used to compute the area of any
* simple geodesic polygon.
*
* Overloaded versions of Geodesic::Direct, Geodesic::ArcDirect, and
* Geodesic::Inverse allow these quantities to be returned. In addition
* there are general functions Geodesic::GenDirect, and Geodesic::GenInverse
* which allow an arbitrary set of results to be computed. The quantities \e
* m12, \e M12, \e M21 which all specify the behavior of nearby geodesics
* obey addition rules. If points 1, 2, and 3 all lie on a single geodesic,
* then the following rules hold:
* - \e s13 = \e s12 + \e s23
* - \e a13 = \e a12 + \e a23
* - \e S13 = \e S12 + \e S23
* - \e m13 = \e m12 \e M23 + \e m23 \e M21
* - \e M13 = \e M12 \e M23 − (1 − \e M12 \e M21) \e m23 / \e m12
* - \e M31 = \e M32 \e M21 − (1 − \e M23 \e M32) \e m12 / \e m23
*
* Additional functionality is provided by the GeodesicLine class, which
* allows a sequence of points along a geodesic to be computed.
*
* The shortest distance returned by the solution of the inverse problem is
* (obviously) uniquely defined. However, in a few special cases there are
* multiple azimuths which yield the same shortest distance. Here is a
* catalog of those cases:
* - \e lat1 = −\e lat2 (with neither point at a pole). If \e azi1 =
* \e azi2, the geodesic is unique. Otherwise there are two geodesics and
* the second one is obtained by setting [\e azi1, \e azi2] → [\e
* azi2, \e azi1], [\e M12, \e M21] → [\e M21, \e M12], \e S12 →
* −\e S12. (This occurs when the longitude difference is near
* ±180° for oblate ellipsoids.)
* - \e lon2 = \e lon1 ± 180° (with neither point at a pole). If
* \e azi1 = 0° or ±180°, the geodesic is unique. Otherwise
* there are two geodesics and the second one is obtained by setting [\e
* azi1, \e azi2] → [−\e azi1, −\e azi2], \e S12 →
* −\e S12. (This occurs when \e lat2 is near −\e lat1 for
* prolate ellipsoids.)
* - Points 1 and 2 at opposite poles. There are infinitely many geodesics
* which can be generated by setting [\e azi1, \e azi2] → [\e azi1, \e
* azi2] + [\e d, −\e d], for arbitrary \e d. (For spheres, this
* prescription applies when points 1 and 2 are antipodal.)
* - s12 = 0 (coincident points). There are infinitely many geodesics which
* can be generated by setting [\e azi1, \e azi2] → [\e azi1, \e azi2]
* + [\e d, \e d], for arbitrary \e d.
*
* The calculations are accurate to better than 15 nm (15 nanometers) for the
* WGS84 ellipsoid. See Sec. 9 of
* <a href="http://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
* details. The algorithms used by this class are based on series expansions
* using the flattening \e f as a small parameter. These are only accurate
* for |<i>f</i>| < 0.02; however reasonably accurate results will be
* obtained for |<i>f</i>| < 0.2. Here is a table of the approximate
* maximum error (expressed as a distance) for an ellipsoid with the same
* major radius as the WGS84 ellipsoid and different values of the
* flattening.<pre>
* |f| error
* 0.01 25 nm
* 0.02 30 nm
* 0.05 10 um
* 0.1 1.5 mm
* 0.2 300 mm
* </pre>
* For very eccentric ellipsoids, use GeodesicExact instead.
*
* The algorithms are described in
* - C. F. F. Karney,
* <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
* Algorithms for geodesics</a>,
* J. Geodesy <b>87</b>, 43--55 (2013);
* DOI: <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
* 10.1007/s00190-012-0578-z</a>;
* addenda: <a href="http://geographiclib.sf.net/geod-addenda.html">
* geod-addenda.html</a>.
* .
* For more information on geodesics see \ref geodesic.
*
* Example of use:
* \include example-Geodesic.cpp
*
* <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
* providing access to the functionality of Geodesic and GeodesicLine.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Geodesic {
private:
typedef Math::real real;
friend class GeodesicLine;
static const int nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
static const int nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
static const int nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
static const int nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
static const int nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
static const int nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
static const int nA3x_ = nA3_;
static const int nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
static const int nC3x_ = (nC3_ * (nC3_ - 1)) / 2;
static const int nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
// Size for temporary array
// nC = max(max(nC1_, nC1p_, nC2_) + 1, max(nC3_, nC4_))
static const int nC_ = GEOGRAPHICLIB_GEODESIC_ORDER + 1;
static const unsigned maxit1_ = 20;
unsigned maxit2_;
real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;
enum captype {
CAP_NONE = 0U,
CAP_C1 = 1U<<0,
CAP_C1p = 1U<<1,
CAP_C2 = 1U<<2,
CAP_C3 = 1U<<3,
CAP_C4 = 1U<<4,
CAP_ALL = 0x1FU,
CAP_MASK = CAP_ALL,
OUT_ALL = 0x7F80U,
OUT_MASK = 0xFF80U, // Includes LONG_UNROLL
};
static real SinCosSeries(bool sinp,
real sinx, real cosx, const real c[], int n);
static real Astroid(real x, real y);
real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
real _A3x[nA3x_], _C3x[nC3x_], _C4x[nC4x_];
void Lengths(real eps, real sig12,
real ssig1, real csig1, real dn1,
real ssig2, real csig2, real dn2,
real cbet1, real cbet2, unsigned outmask,
real& s12s, real& m12a, real& m0,
real& M12, real& M21, real Ca[]) const;
real InverseStart(real sbet1, real cbet1, real dn1,
real sbet2, real cbet2, real dn2,
real lam12,
real& salp1, real& calp1,
real& salp2, real& calp2, real& dnm,
real Ca[]) const;
real Lambda12(real sbet1, real cbet1, real dn1,
real sbet2, real cbet2, real dn2,
real salp1, real calp1,
real& salp2, real& calp2, real& sig12,
real& ssig1, real& csig1, real& ssig2, real& csig2,
real& eps, real& domg12, bool diffp, real& dlam12,
real Ca[])
const;
// These are Maxima generated functions to provide series approximations to
// the integrals for the ellipsoidal geodesic.
static real A1m1f(real eps);
static void C1f(real eps, real c[]);
static void C1pf(real eps, real c[]);
static real A2m1f(real eps);
static void C2f(real eps, real c[]);
void A3coeff();
real A3f(real eps) const;
void C3coeff();
void C3f(real eps, real c[]) const;
void C4coeff();
void C4f(real k2, real c[]) const;
public:
/**
* Bit masks for what calculations to do. These masks do double duty.
* They signify to the GeodesicLine::GeodesicLine constructor and to
* Geodesic::Line what capabilities should be included in the GeodesicLine
* object. They also specify which results to return in the general
* routines Geodesic::GenDirect and Geodesic::GenInverse routines.
* GeodesicLine::mask is a duplication of this enum.
**********************************************************************/
enum mask {
/**
* No capabilities, no output.
* @hideinitializer
**********************************************************************/
NONE = 0U,
/**
* Calculate latitude \e lat2. (It's not necessary to include this as a
* capability to GeodesicLine because this is included by default.)
* @hideinitializer
**********************************************************************/
LATITUDE = 1U<<7 | CAP_NONE,
/**
* Calculate longitude \e lon2.
* @hideinitializer
**********************************************************************/
LONGITUDE = 1U<<8 | CAP_C3,
/**
* Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
* include this as a capability to GeodesicLine because this is included
* by default.)
* @hideinitializer
**********************************************************************/
AZIMUTH = 1U<<9 | CAP_NONE,
/**
* Calculate distance \e s12.
* @hideinitializer
**********************************************************************/
DISTANCE = 1U<<10 | CAP_C1,
/**
* Allow distance \e s12 to be used as input in the direct geodesic
* problem.
* @hideinitializer
**********************************************************************/
DISTANCE_IN = 1U<<11 | CAP_C1 | CAP_C1p,
/**
* Calculate reduced length \e m12.
* @hideinitializer
**********************************************************************/
REDUCEDLENGTH = 1U<<12 | CAP_C1 | CAP_C2,
/**
* Calculate geodesic scales \e M12 and \e M21.
* @hideinitializer
**********************************************************************/
GEODESICSCALE = 1U<<13 | CAP_C1 | CAP_C2,
/**
* Calculate area \e S12.
* @hideinitializer
**********************************************************************/
AREA = 1U<<14 | CAP_C4,
/**
* Unroll \e lon2 in the direct calculation. (This flag used to be
* called LONG_NOWRAP.)
* @hideinitializer
**********************************************************************/
LONG_UNROLL = 1U<<15,
/// \cond SKIP
LONG_NOWRAP = LONG_UNROLL,
/// \endcond
/**
* All capabilities, calculate everything. (LONG_UNROLL is not
* included in this mask.)
* @hideinitializer
**********************************************************************/
ALL = OUT_ALL| CAP_ALL,
};
/** \name Constructor
**********************************************************************/
///@{
/**
* Constructor for a ellipsoid with
*
* @param[in] a equatorial radius (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @exception GeographicErr if \e a or (1 − \e f) \e a is not
* positive.
**********************************************************************/
Geodesic(real a, real f);
///@}
/** \name Direct geodesic problem specified in terms of distance.
**********************************************************************/
///@{
/**
* Solve the direct geodesic problem where the length of the geodesic
* is specified in terms of distance.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
* negative.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* \e lat1 should be in the range [−90°, 90°]. The values of
* \e lon2 and \e azi2 returned are in the range [−180°,
* 180°).
*
* If either point is at a pole, the azimuth is defined by keeping the
* longitude fixed, writing \e lat = ±(90° − ε),
* and taking the limit ε → 0+. An arc length greater that
* 180° signifies a geodesic which is not a shortest path. (For a
* prolate ellipsoid, an additional condition is necessary for a shortest
* path: the longitudinal extent must not exceed of 180°.)
*
* The following functions are overloaded versions of Geodesic::Direct
* which omit some of the output parameters. Note, however, that the arc
* length is always computed and returned as the function value.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2,
real& m12, real& M12, real& M21, real& S12)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE | AREA,
lat2, lon2, azi2, t, m12, M12, M21, S12);
}
/**
* See the documentation for Geodesic::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE,
lat2, lon2, t, t, t, t, t, t);
}
/**
* See the documentation for Geodesic::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH,
lat2, lon2, azi2, t, t, t, t, t);
}
/**
* See the documentation for Geodesic::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2, real& m12)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
lat2, lon2, azi2, t, m12, t, t, t);
}
/**
* See the documentation for Geodesic::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2,
real& M12, real& M21)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
lat2, lon2, azi2, t, t, M12, M21, t);
}
/**
* See the documentation for Geodesic::Direct.
**********************************************************************/
Math::real Direct(real lat1, real lon1, real azi1, real s12,
real& lat2, real& lon2, real& azi2,
real& m12, real& M12, real& M21)
const {
real t;
return GenDirect(lat1, lon1, azi1, false, s12,
LATITUDE | LONGITUDE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE,
lat2, lon2, azi2, t, m12, M12, M21, t);
}
///@}
/** \name Direct geodesic problem specified in terms of arc length.
**********************************************************************/
///@{
/**
* Solve the direct geodesic problem where the length of the geodesic
* is specified in terms of arc length.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] a12 arc length between point 1 and point 2 (degrees); it can
* be negative.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] s12 distance between point 1 and point 2 (meters).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
*
* \e lat1 should be in the range [−90°, 90°]. The values of
* \e lon2 and \e azi2 returned are in the range [−180°,
* 180°).
*
* If either point is at a pole, the azimuth is defined by keeping the
* longitude fixed, writing \e lat = ±(90° − ε),
* and taking the limit ε → 0+. An arc length greater that
* 180° signifies a geodesic which is not a shortest path. (For a
* prolate ellipsoid, an additional condition is necessary for a shortest
* path: the longitudinal extent must not exceed of 180°.)
*
* The following functions are overloaded versions of Geodesic::Direct
* which omit some of the output parameters.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2, real& s12,
real& m12, real& M12, real& M21, real& S12)
const {
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
REDUCEDLENGTH | GEODESICSCALE | AREA,
lat2, lon2, azi2, s12, m12, M12, M21, S12);
}
/**
* See the documentation for Geodesic::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE,
lat2, lon2, t, t, t, t, t, t);
}
/**
* See the documentation for Geodesic::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH,
lat2, lon2, azi2, t, t, t, t, t);
}
/**
* See the documentation for Geodesic::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2, real& s12)
const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
lat2, lon2, azi2, s12, t, t, t, t);
}
/**
* See the documentation for Geodesic::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2,
real& s12, real& m12) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
REDUCEDLENGTH,
lat2, lon2, azi2, s12, m12, t, t, t);
}
/**
* See the documentation for Geodesic::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2, real& s12,
real& M12, real& M21) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
GEODESICSCALE,
lat2, lon2, azi2, s12, t, M12, M21, t);
}
/**
* See the documentation for Geodesic::ArcDirect.
**********************************************************************/
void ArcDirect(real lat1, real lon1, real azi1, real a12,
real& lat2, real& lon2, real& azi2, real& s12,
real& m12, real& M12, real& M21) const {
real t;
GenDirect(lat1, lon1, azi1, true, a12,
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
REDUCEDLENGTH | GEODESICSCALE,
lat2, lon2, azi2, s12, m12, M12, M21, t);
}
///@}
/** \name General version of the direct geodesic solution.
**********************************************************************/
///@{
/**
* The general direct geodesic problem. Geodesic::Direct and
* Geodesic::ArcDirect are defined in terms of this function.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] arcmode boolean flag determining the meaning of the \e
* s12_a12.
* @param[in] s12_a12 if \e arcmode is false, this is the distance between
* point 1 and point 2 (meters); otherwise it is the arc length between
* point 1 and point 2 (degrees); it can be negative.
* @param[in] outmask a bitor'ed combination of Geodesic::mask values
* specifying which of the following parameters should be set.
* @param[out] lat2 latitude of point 2 (degrees).
* @param[out] lon2 longitude of point 2 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] s12 distance between point 1 and point 2 (meters).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* The Geodesic::mask values possible for \e outmask are
* - \e outmask |= Geodesic::LATITUDE for the latitude \e lat2;
* - \e outmask |= Geodesic::LONGITUDE for the latitude \e lon2;
* - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2;
* - \e outmask |= Geodesic::DISTANCE for the distance \e s12;
* - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e
* m12;
* - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e
* M12 and \e M21;
* - \e outmask |= Geodesic::AREA for the area \e S12;
* - \e outmask |= Geodesic::ALL for all of the above;
* - \e outmask |= Geodesic::LONG_UNROLL to unroll \e lon2 instead of
* wrapping it into the range [−180°, 180°).
* .
* The function value \e a12 is always computed and returned and this
* equals \e s12_a12 is \e arcmode is true. If \e outmask includes
* Geodesic::DISTANCE and \e arcmode is false, then \e s12 = \e s12_a12.
* It is not necessary to include Geodesic::DISTANCE_IN in \e outmask; this
* is automatically included is \e arcmode is false.
*
* With the Geodesic::LONG_UNROLL bit set, the quantity \e lon2 − \e
* lon1 indicates how many times and in what sense the geodesic encircles
* the ellipsoid.
**********************************************************************/
Math::real GenDirect(real lat1, real lon1, real azi1,
bool arcmode, real s12_a12, unsigned outmask,
real& lat2, real& lon2, real& azi2,
real& s12, real& m12, real& M12, real& M21,
real& S12) const;
///@}
/** \name Inverse geodesic problem.
**********************************************************************/
///@{
/**
* Solve the inverse geodesic problem.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] lat2 latitude of point 2 (degrees).
* @param[in] lon2 longitude of point 2 (degrees).
* @param[out] s12 distance between point 1 and point 2 (meters).
* @param[out] azi1 azimuth at point 1 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* \e lat1 and \e lat2 should be in the range [−90°, 90°].
* The values of \e azi1 and \e azi2 returned are in the range
* [−180°, 180°).
*
* If either point is at a pole, the azimuth is defined by keeping the
* longitude fixed, writing \e lat = ±(90° − ε),
* and taking the limit ε → 0+.
*
* The solution to the inverse problem is found using Newton's method. If
* this fails to converge (this is very unlikely in geodetic applications
* but does occur for very eccentric ellipsoids), then the bisection method
* is used to refine the solution.
*
* The following functions are overloaded versions of Geodesic::Inverse
* which omit some of the output parameters. Note, however, that the arc
* length is always computed and returned as the function value.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2, real& m12,
real& M12, real& M21, real& S12) const {
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE | AREA,
s12, azi1, azi2, m12, M12, M21, S12);
}
/**
* See the documentation for Geodesic::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12) const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE,
s12, t, t, t, t, t, t);
}
/**
* See the documentation for Geodesic::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& azi1, real& azi2) const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
AZIMUTH,
t, azi1, azi2, t, t, t, t);
}
/**
* See the documentation for Geodesic::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2)
const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH,
s12, azi1, azi2, t, t, t, t);
}
/**
* See the documentation for Geodesic::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2, real& m12)
const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH | REDUCEDLENGTH,
s12, azi1, azi2, m12, t, t, t);
}
/**
* See the documentation for Geodesic::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2,
real& M12, real& M21) const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH | GEODESICSCALE,
s12, azi1, azi2, t, M12, M21, t);
}
/**
* See the documentation for Geodesic::Inverse.
**********************************************************************/
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
real& s12, real& azi1, real& azi2, real& m12,
real& M12, real& M21) const {
real t;
return GenInverse(lat1, lon1, lat2, lon2,
DISTANCE | AZIMUTH |
REDUCEDLENGTH | GEODESICSCALE,
s12, azi1, azi2, m12, M12, M21, t);
}
///@}
/** \name General version of inverse geodesic solution.
**********************************************************************/
///@{
/**
* The general inverse geodesic calculation. Geodesic::Inverse is defined
* in terms of this function.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] lat2 latitude of point 2 (degrees).
* @param[in] lon2 longitude of point 2 (degrees).
* @param[in] outmask a bitor'ed combination of Geodesic::mask values
* specifying which of the following parameters should be set.
* @param[out] s12 distance between point 1 and point 2 (meters).
* @param[out] azi1 azimuth at point 1 (degrees).
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
* @param[out] m12 reduced length of geodesic (meters).
* @param[out] M12 geodesic scale of point 2 relative to point 1
* (dimensionless).
* @param[out] M21 geodesic scale of point 1 relative to point 2
* (dimensionless).
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
* @return \e a12 arc length of between point 1 and point 2 (degrees).
*
* The Geodesic::mask values possible for \e outmask are
* - \e outmask |= Geodesic::DISTANCE for the distance \e s12;
* - \e outmask |= Geodesic::AZIMUTH for the latitude \e azi2;
* - \e outmask |= Geodesic::REDUCEDLENGTH for the reduced length \e
* m12;
* - \e outmask |= Geodesic::GEODESICSCALE for the geodesic scales \e
* M12 and \e M21;
* - \e outmask |= Geodesic::AREA for the area \e S12;
* - \e outmask |= Geodesic::ALL for all of the above.
* .
* The arc length is always computed and returned as the function value.
**********************************************************************/
Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
unsigned outmask,
real& s12, real& azi1, real& azi2,
real& m12, real& M12, real& M21, real& S12)
const;
///@}
/** \name Interface to GeodesicLine.
**********************************************************************/
///@{
/**
* Set up to compute several points on a single geodesic.
*
* @param[in] lat1 latitude of point 1 (degrees).
* @param[in] lon1 longitude of point 1 (degrees).
* @param[in] azi1 azimuth at point 1 (degrees).
* @param[in] caps bitor'ed combination of Geodesic::mask values
* specifying the capabilities the GeodesicLine object should possess,
* i.e., which quantities can be returned in calls to
* GeodesicLine::Position.
* @return a GeodesicLine object.
*
* \e lat1 should be in the range [−90°, 90°].
*
* The Geodesic::mask values are
* - \e caps |= Geodesic::LATITUDE for the latitude \e lat2; this is
* added automatically;
* - \e caps |= Geodesic::LONGITUDE for the latitude \e lon2;
* - \e caps |= Geodesic::AZIMUTH for the azimuth \e azi2; this is
* added automatically;
* - \e caps |= Geodesic::DISTANCE for the distance \e s12;
* - \e caps |= Geodesic::REDUCEDLENGTH for the reduced length \e m12;
* - \e caps |= Geodesic::GEODESICSCALE for the geodesic scales \e M12
* and \e M21;
* - \e caps |= Geodesic::AREA for the area \e S12;
* - \e caps |= Geodesic::DISTANCE_IN permits the length of the
* geodesic to be given in terms of \e s12; without this capability the
* length can only be specified in terms of arc length;
* - \e caps |= Geodesic::ALL for all of the above.
* .
* The default value of \e caps is Geodesic::ALL.
*
* If the point is at a pole, the azimuth is defined by keeping \e lon1
* fixed, writing \e lat1 = ±(90 − ε), and taking the
* limit ε → 0+.
**********************************************************************/
GeodesicLine Line(real lat1, real lon1, real azi1, unsigned caps = ALL)
const;
///@}
/** \name Inspector functions.
**********************************************************************/
///@{
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
Math::real MajorRadius() const { return _a; }
/**
* @return \e f the flattening of the ellipsoid. This is the
* value used in the constructor.
**********************************************************************/
Math::real Flattening() const { return _f; }
/// \cond SKIP
/**
* <b>DEPRECATED</b>
* @return \e r the inverse flattening of the ellipsoid.
**********************************************************************/
Math::real InverseFlattening() const { return 1/_f; }
/// \endcond
/**
* @return total area of ellipsoid in meters<sup>2</sup>. The area of a
* polygon encircling a pole can be found by adding
* Geodesic::EllipsoidArea()/2 to the sum of \e S12 for each side of the
* polygon.
**********************************************************************/
Math::real EllipsoidArea() const
{ return 4 * Math::pi() * _c2; }
///@}
/**
* A global instantiation of Geodesic with the parameters for the WGS84
* ellipsoid.
**********************************************************************/
static const Geodesic& WGS84();
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_GEODESIC_HPP
|