This file is indexed.

/usr/include/GeographicLib/Geocentric.hpp is in libgeographic-dev 1.45-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/**
 * \file Geocentric.hpp
 * \brief Header for GeographicLib::Geocentric class
 *
 * Copyright (c) Charles Karney (2008-2015) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_GEOCENTRIC_HPP)
#define GEOGRAPHICLIB_GEOCENTRIC_HPP 1

#include <vector>
#include <GeographicLib/Constants.hpp>

namespace GeographicLib {

  /**
   * \brief %Geocentric coordinates
   *
   * Convert between geodetic coordinates latitude = \e lat, longitude = \e
   * lon, height = \e h (measured vertically from the surface of the ellipsoid)
   * to geocentric coordinates (\e X, \e Y, \e Z).  The origin of geocentric
   * coordinates is at the center of the earth.  The \e Z axis goes thru the
   * north pole, \e lat = 90&deg;.  The \e X axis goes thru \e lat = 0,
   * \e lon = 0.  %Geocentric coordinates are also known as earth centered,
   * earth fixed (ECEF) coordinates.
   *
   * The conversion from geographic to geocentric coordinates is
   * straightforward.  For the reverse transformation we use
   * - H. Vermeille,
   *   <a href="https://dx.doi.org/10.1007/s00190-002-0273-6"> Direct
   *   transformation from geocentric coordinates to geodetic coordinates</a>,
   *   J. Geodesy 76, 451--454 (2002).
   * .
   * Several changes have been made to ensure that the method returns accurate
   * results for all finite inputs (even if \e h is infinite).  The changes are
   * described in Appendix B of
   * - C. F. F. Karney,
   *   <a href="http://arxiv.org/abs/1102.1215v1">Geodesics
   *   on an ellipsoid of revolution</a>,
   *   Feb. 2011;
   *   preprint
   *   <a href="http://arxiv.org/abs/1102.1215v1">arxiv:1102.1215v1</a>.
   * .
   * Vermeille similarly updated his method in
   * - H. Vermeille,
   *   <a href="https://dx.doi.org/10.1007/s00190-010-0419-x">
   *   An analytical method to transform geocentric into
   *   geodetic coordinates</a>, J. Geodesy 85, 105--117 (2011).
   * .
   * See \ref geocentric for more information.
   *
   * The errors in these routines are close to round-off.  Specifically, for
   * points within 5000 km of the surface of the ellipsoid (either inside or
   * outside the ellipsoid), the error is bounded by 7 nm (7 nanometers) for
   * the WGS84 ellipsoid.  See \ref geocentric for further information on the
   * errors.
   *
   * Example of use:
   * \include example-Geocentric.cpp
   *
   * <a href="CartConvert.1.html">CartConvert</a> is a command-line utility
   * providing access to the functionality of Geocentric and LocalCartesian.
   **********************************************************************/

  class GEOGRAPHICLIB_EXPORT Geocentric {
  private:
    typedef Math::real real;
    friend class LocalCartesian;
    friend class MagneticCircle; // MagneticCircle uses Rotation
    friend class MagneticModel;  // MagneticModel uses IntForward
    friend class GravityCircle;  // GravityCircle uses Rotation
    friend class GravityModel;   // GravityModel uses IntForward
    friend class NormalGravity;  // NormalGravity uses IntForward
    static const size_t dim_ = 3;
    static const size_t dim2_ = dim_ * dim_;
    real _a, _f, _e2, _e2m, _e2a, _e4a, _maxrad;
    static void Rotation(real sphi, real cphi, real slam, real clam,
                         real M[dim2_]);
    static void Rotate(real M[dim2_], real x, real y, real z,
                       real& X, real& Y, real& Z) {
      // Perform [X,Y,Z]^t = M.[x,y,z]^t
      // (typically local cartesian to geocentric)
      X = M[0] * x + M[1] * y + M[2] * z;
      Y = M[3] * x + M[4] * y + M[5] * z;
      Z = M[6] * x + M[7] * y + M[8] * z;
    }
    static void Unrotate(real M[dim2_], real X, real Y, real Z,
                         real& x, real& y, real& z)  {
      // Perform [x,y,z]^t = M^t.[X,Y,Z]^t
      // (typically geocentric to local cartesian)
      x = M[0] * X + M[3] * Y + M[6] * Z;
      y = M[1] * X + M[4] * Y + M[7] * Z;
      z = M[2] * X + M[5] * Y + M[8] * Z;
    }
    void IntForward(real lat, real lon, real h, real& X, real& Y, real& Z,
                    real M[dim2_]) const;
    void IntReverse(real X, real Y, real Z, real& lat, real& lon, real& h,
                    real M[dim2_]) const;

  public:

    /**
     * Constructor for a ellipsoid with
     *
     * @param[in] a equatorial radius (meters).
     * @param[in] f flattening of ellipsoid.  Setting \e f = 0 gives a sphere.
     *   Negative \e f gives a prolate ellipsoid.
     * @exception GeographicErr if \e a or (1 &minus; \e f) \e a is not
     *   positive.
     **********************************************************************/
    Geocentric(real a, real f);

    /**
     * A default constructor (for use by NormalGravity).
     **********************************************************************/
    Geocentric() : _a(-1) {}

    /**
     * Convert from geodetic to geocentric coordinates.
     *
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[in] h height of point above the ellipsoid (meters).
     * @param[out] X geocentric coordinate (meters).
     * @param[out] Y geocentric coordinate (meters).
     * @param[out] Z geocentric coordinate (meters).
     *
     * \e lat should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    void Forward(real lat, real lon, real h, real& X, real& Y, real& Z)
      const {
      if (Init())
        IntForward(lat, lon, h, X, Y, Z, NULL);
    }

    /**
     * Convert from geodetic to geocentric coordinates and return rotation
     * matrix.
     *
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[in] h height of point above the ellipsoid (meters).
     * @param[out] X geocentric coordinate (meters).
     * @param[out] Y geocentric coordinate (meters).
     * @param[out] Z geocentric coordinate (meters).
     * @param[out] M if the length of the vector is 9, fill with the rotation
     *   matrix in row-major order.
     *
     * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
     * express \e v as \e column vectors in one of two ways
     * - in east, north, up coordinates (where the components are relative to a
     *   local coordinate system at (\e lat, \e lon, \e h)); call this
     *   representation \e v1.
     * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
     *   \e v0.
     * .
     * Then we have \e v0 = \e M &sdot; \e v1.
     **********************************************************************/
    void Forward(real lat, real lon, real h, real& X, real& Y, real& Z,
                 std::vector<real>& M)
      const {
      if (!Init())
        return;
      if (M.end() == M.begin() + dim2_) {
        real t[dim2_];
        IntForward(lat, lon, h, X, Y, Z, t);
        std::copy(t, t + dim2_, M.begin());
      } else
        IntForward(lat, lon, h, X, Y, Z, NULL);
    }

    /**
     * Convert from geocentric to geodetic to coordinates.
     *
     * @param[in] X geocentric coordinate (meters).
     * @param[in] Y geocentric coordinate (meters).
     * @param[in] Z geocentric coordinate (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] h height of point above the ellipsoid (meters).
     *
     * In general there are multiple solutions and the result which maximizes
     * \e h is returned.  If there are still multiple solutions with different
     * latitudes (applies only if \e Z = 0), then the solution with \e lat > 0
     * is returned.  If there are still multiple solutions with different
     * longitudes (applies only if \e X = \e Y = 0) then \e lon = 0 is
     * returned.  The value of \e h returned satisfies \e h &ge; &minus; \e a
     * (1 &minus; <i>e</i><sup>2</sup>) / sqrt(1 &minus; <i>e</i><sup>2</sup>
     * sin<sup>2</sup>\e lat).  The value of \e lon returned is in the range
     * [&minus;180&deg;, 180&deg;).
     **********************************************************************/
    void Reverse(real X, real Y, real Z, real& lat, real& lon, real& h)
      const {
      if (Init())
        IntReverse(X, Y, Z, lat, lon, h, NULL);
    }

    /**
     * Convert from geocentric to geodetic to coordinates.
     *
     * @param[in] X geocentric coordinate (meters).
     * @param[in] Y geocentric coordinate (meters).
     * @param[in] Z geocentric coordinate (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] h height of point above the ellipsoid (meters).
     * @param[out] M if the length of the vector is 9, fill with the rotation
     *   matrix in row-major order.
     *
     * Let \e v be a unit vector located at (\e lat, \e lon, \e h).  We can
     * express \e v as \e column vectors in one of two ways
     * - in east, north, up coordinates (where the components are relative to a
     *   local coordinate system at (\e lat, \e lon, \e h)); call this
     *   representation \e v1.
     * - in geocentric \e X, \e Y, \e Z coordinates; call this representation
     *   \e v0.
     * .
     * Then we have \e v1 = <i>M</i><sup>T</sup> &sdot; \e v0, where
     * <i>M</i><sup>T</sup> is the transpose of \e M.
     **********************************************************************/
    void Reverse(real X, real Y, real Z, real& lat, real& lon, real& h,
                 std::vector<real>& M)
      const {
      if (!Init())
        return;
      if (M.end() == M.begin() + dim2_) {
        real t[dim2_];
        IntReverse(X, Y, Z, lat, lon, h, t);
        std::copy(t, t + dim2_, M.begin());
      } else
        IntReverse(X, Y, Z, lat, lon, h, NULL);
    }

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return true if the object has been initialized.
     **********************************************************************/
    bool Init() const { return _a > 0; }
    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value used in the constructor.
     **********************************************************************/
    Math::real MajorRadius() const
    { return Init() ? _a : Math::NaN(); }

    /**
     * @return \e f the  flattening of the ellipsoid.  This is the
     *   value used in the constructor.
     **********************************************************************/
    Math::real Flattening() const
    { return Init() ? _f : Math::NaN(); }
    ///@}

    /// \cond SKIP
    /**
     * <b>DEPRECATED</b>
     * @return \e r the inverse flattening of the ellipsoid.
     **********************************************************************/
    Math::real InverseFlattening() const
    { return Init() ? 1/_f : Math::NaN(); }
    /// \endcond

    /**
     * A global instantiation of Geocentric with the parameters for the WGS84
     * ellipsoid.
     **********************************************************************/
    static const Geocentric& WGS84();
  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_GEOCENTRIC_HPP