/usr/include/GeographicLib/Geocentric.hpp is in libgeographic-dev 1.45-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | /**
* \file Geocentric.hpp
* \brief Header for GeographicLib::Geocentric class
*
* Copyright (c) Charles Karney (2008-2015) <charles@karney.com> and licensed
* under the MIT/X11 License. For more information, see
* http://geographiclib.sourceforge.net/
**********************************************************************/
#if !defined(GEOGRAPHICLIB_GEOCENTRIC_HPP)
#define GEOGRAPHICLIB_GEOCENTRIC_HPP 1
#include <vector>
#include <GeographicLib/Constants.hpp>
namespace GeographicLib {
/**
* \brief %Geocentric coordinates
*
* Convert between geodetic coordinates latitude = \e lat, longitude = \e
* lon, height = \e h (measured vertically from the surface of the ellipsoid)
* to geocentric coordinates (\e X, \e Y, \e Z). The origin of geocentric
* coordinates is at the center of the earth. The \e Z axis goes thru the
* north pole, \e lat = 90°. The \e X axis goes thru \e lat = 0,
* \e lon = 0. %Geocentric coordinates are also known as earth centered,
* earth fixed (ECEF) coordinates.
*
* The conversion from geographic to geocentric coordinates is
* straightforward. For the reverse transformation we use
* - H. Vermeille,
* <a href="https://dx.doi.org/10.1007/s00190-002-0273-6"> Direct
* transformation from geocentric coordinates to geodetic coordinates</a>,
* J. Geodesy 76, 451--454 (2002).
* .
* Several changes have been made to ensure that the method returns accurate
* results for all finite inputs (even if \e h is infinite). The changes are
* described in Appendix B of
* - C. F. F. Karney,
* <a href="http://arxiv.org/abs/1102.1215v1">Geodesics
* on an ellipsoid of revolution</a>,
* Feb. 2011;
* preprint
* <a href="http://arxiv.org/abs/1102.1215v1">arxiv:1102.1215v1</a>.
* .
* Vermeille similarly updated his method in
* - H. Vermeille,
* <a href="https://dx.doi.org/10.1007/s00190-010-0419-x">
* An analytical method to transform geocentric into
* geodetic coordinates</a>, J. Geodesy 85, 105--117 (2011).
* .
* See \ref geocentric for more information.
*
* The errors in these routines are close to round-off. Specifically, for
* points within 5000 km of the surface of the ellipsoid (either inside or
* outside the ellipsoid), the error is bounded by 7 nm (7 nanometers) for
* the WGS84 ellipsoid. See \ref geocentric for further information on the
* errors.
*
* Example of use:
* \include example-Geocentric.cpp
*
* <a href="CartConvert.1.html">CartConvert</a> is a command-line utility
* providing access to the functionality of Geocentric and LocalCartesian.
**********************************************************************/
class GEOGRAPHICLIB_EXPORT Geocentric {
private:
typedef Math::real real;
friend class LocalCartesian;
friend class MagneticCircle; // MagneticCircle uses Rotation
friend class MagneticModel; // MagneticModel uses IntForward
friend class GravityCircle; // GravityCircle uses Rotation
friend class GravityModel; // GravityModel uses IntForward
friend class NormalGravity; // NormalGravity uses IntForward
static const size_t dim_ = 3;
static const size_t dim2_ = dim_ * dim_;
real _a, _f, _e2, _e2m, _e2a, _e4a, _maxrad;
static void Rotation(real sphi, real cphi, real slam, real clam,
real M[dim2_]);
static void Rotate(real M[dim2_], real x, real y, real z,
real& X, real& Y, real& Z) {
// Perform [X,Y,Z]^t = M.[x,y,z]^t
// (typically local cartesian to geocentric)
X = M[0] * x + M[1] * y + M[2] * z;
Y = M[3] * x + M[4] * y + M[5] * z;
Z = M[6] * x + M[7] * y + M[8] * z;
}
static void Unrotate(real M[dim2_], real X, real Y, real Z,
real& x, real& y, real& z) {
// Perform [x,y,z]^t = M^t.[X,Y,Z]^t
// (typically geocentric to local cartesian)
x = M[0] * X + M[3] * Y + M[6] * Z;
y = M[1] * X + M[4] * Y + M[7] * Z;
z = M[2] * X + M[5] * Y + M[8] * Z;
}
void IntForward(real lat, real lon, real h, real& X, real& Y, real& Z,
real M[dim2_]) const;
void IntReverse(real X, real Y, real Z, real& lat, real& lon, real& h,
real M[dim2_]) const;
public:
/**
* Constructor for a ellipsoid with
*
* @param[in] a equatorial radius (meters).
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
* Negative \e f gives a prolate ellipsoid.
* @exception GeographicErr if \e a or (1 − \e f) \e a is not
* positive.
**********************************************************************/
Geocentric(real a, real f);
/**
* A default constructor (for use by NormalGravity).
**********************************************************************/
Geocentric() : _a(-1) {}
/**
* Convert from geodetic to geocentric coordinates.
*
* @param[in] lat latitude of point (degrees).
* @param[in] lon longitude of point (degrees).
* @param[in] h height of point above the ellipsoid (meters).
* @param[out] X geocentric coordinate (meters).
* @param[out] Y geocentric coordinate (meters).
* @param[out] Z geocentric coordinate (meters).
*
* \e lat should be in the range [−90°, 90°].
**********************************************************************/
void Forward(real lat, real lon, real h, real& X, real& Y, real& Z)
const {
if (Init())
IntForward(lat, lon, h, X, Y, Z, NULL);
}
/**
* Convert from geodetic to geocentric coordinates and return rotation
* matrix.
*
* @param[in] lat latitude of point (degrees).
* @param[in] lon longitude of point (degrees).
* @param[in] h height of point above the ellipsoid (meters).
* @param[out] X geocentric coordinate (meters).
* @param[out] Y geocentric coordinate (meters).
* @param[out] Z geocentric coordinate (meters).
* @param[out] M if the length of the vector is 9, fill with the rotation
* matrix in row-major order.
*
* Let \e v be a unit vector located at (\e lat, \e lon, \e h). We can
* express \e v as \e column vectors in one of two ways
* - in east, north, up coordinates (where the components are relative to a
* local coordinate system at (\e lat, \e lon, \e h)); call this
* representation \e v1.
* - in geocentric \e X, \e Y, \e Z coordinates; call this representation
* \e v0.
* .
* Then we have \e v0 = \e M ⋅ \e v1.
**********************************************************************/
void Forward(real lat, real lon, real h, real& X, real& Y, real& Z,
std::vector<real>& M)
const {
if (!Init())
return;
if (M.end() == M.begin() + dim2_) {
real t[dim2_];
IntForward(lat, lon, h, X, Y, Z, t);
std::copy(t, t + dim2_, M.begin());
} else
IntForward(lat, lon, h, X, Y, Z, NULL);
}
/**
* Convert from geocentric to geodetic to coordinates.
*
* @param[in] X geocentric coordinate (meters).
* @param[in] Y geocentric coordinate (meters).
* @param[in] Z geocentric coordinate (meters).
* @param[out] lat latitude of point (degrees).
* @param[out] lon longitude of point (degrees).
* @param[out] h height of point above the ellipsoid (meters).
*
* In general there are multiple solutions and the result which maximizes
* \e h is returned. If there are still multiple solutions with different
* latitudes (applies only if \e Z = 0), then the solution with \e lat > 0
* is returned. If there are still multiple solutions with different
* longitudes (applies only if \e X = \e Y = 0) then \e lon = 0 is
* returned. The value of \e h returned satisfies \e h ≥ − \e a
* (1 − <i>e</i><sup>2</sup>) / sqrt(1 − <i>e</i><sup>2</sup>
* sin<sup>2</sup>\e lat). The value of \e lon returned is in the range
* [−180°, 180°).
**********************************************************************/
void Reverse(real X, real Y, real Z, real& lat, real& lon, real& h)
const {
if (Init())
IntReverse(X, Y, Z, lat, lon, h, NULL);
}
/**
* Convert from geocentric to geodetic to coordinates.
*
* @param[in] X geocentric coordinate (meters).
* @param[in] Y geocentric coordinate (meters).
* @param[in] Z geocentric coordinate (meters).
* @param[out] lat latitude of point (degrees).
* @param[out] lon longitude of point (degrees).
* @param[out] h height of point above the ellipsoid (meters).
* @param[out] M if the length of the vector is 9, fill with the rotation
* matrix in row-major order.
*
* Let \e v be a unit vector located at (\e lat, \e lon, \e h). We can
* express \e v as \e column vectors in one of two ways
* - in east, north, up coordinates (where the components are relative to a
* local coordinate system at (\e lat, \e lon, \e h)); call this
* representation \e v1.
* - in geocentric \e X, \e Y, \e Z coordinates; call this representation
* \e v0.
* .
* Then we have \e v1 = <i>M</i><sup>T</sup> ⋅ \e v0, where
* <i>M</i><sup>T</sup> is the transpose of \e M.
**********************************************************************/
void Reverse(real X, real Y, real Z, real& lat, real& lon, real& h,
std::vector<real>& M)
const {
if (!Init())
return;
if (M.end() == M.begin() + dim2_) {
real t[dim2_];
IntReverse(X, Y, Z, lat, lon, h, t);
std::copy(t, t + dim2_, M.begin());
} else
IntReverse(X, Y, Z, lat, lon, h, NULL);
}
/** \name Inspector functions
**********************************************************************/
///@{
/**
* @return true if the object has been initialized.
**********************************************************************/
bool Init() const { return _a > 0; }
/**
* @return \e a the equatorial radius of the ellipsoid (meters). This is
* the value used in the constructor.
**********************************************************************/
Math::real MajorRadius() const
{ return Init() ? _a : Math::NaN(); }
/**
* @return \e f the flattening of the ellipsoid. This is the
* value used in the constructor.
**********************************************************************/
Math::real Flattening() const
{ return Init() ? _f : Math::NaN(); }
///@}
/// \cond SKIP
/**
* <b>DEPRECATED</b>
* @return \e r the inverse flattening of the ellipsoid.
**********************************************************************/
Math::real InverseFlattening() const
{ return Init() ? 1/_f : Math::NaN(); }
/// \endcond
/**
* A global instantiation of Geocentric with the parameters for the WGS84
* ellipsoid.
**********************************************************************/
static const Geocentric& WGS84();
};
} // namespace GeographicLib
#endif // GEOGRAPHICLIB_GEOCENTRIC_HPP
|