This file is indexed.

/usr/include/GeographicLib/CassiniSoldner.hpp is in libgeographic-dev 1.45-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/**
 * \file CassiniSoldner.hpp
 * \brief Header for GeographicLib::CassiniSoldner class
 *
 * Copyright (c) Charles Karney (2009-2015) <charles@karney.com> and licensed
 * under the MIT/X11 License.  For more information, see
 * http://geographiclib.sourceforge.net/
 **********************************************************************/

#if !defined(GEOGRAPHICLIB_CASSINISOLDNER_HPP)
#define GEOGRAPHICLIB_CASSINISOLDNER_HPP 1

#include <GeographicLib/Geodesic.hpp>
#include <GeographicLib/GeodesicLine.hpp>
#include <GeographicLib/Constants.hpp>

namespace GeographicLib {

  /**
   * \brief Cassini-Soldner projection
   *
   * Cassini-Soldner projection centered at an arbitrary position, \e lat0, \e
   * lon0, on the ellipsoid.  This projection is a transverse cylindrical
   * equidistant projection.  The projection from (\e lat, \e lon) to easting
   * and northing (\e x, \e y) is defined by geodesics as follows.  Go north
   * along a geodesic a distance \e y from the central point; then turn
   * clockwise 90&deg; and go a distance \e x along a geodesic.
   * (Although the initial heading is north, this changes to south if the pole
   * is crossed.)  This procedure uniquely defines the reverse projection.  The
   * forward projection is constructed as follows.  Find the point (\e lat1, \e
   * lon1) on the meridian closest to (\e lat, \e lon).  Here we consider the
   * full meridian so that \e lon1 may be either \e lon0 or \e lon0 +
   * 180&deg;.  \e x is the geodesic distance from (\e lat1, \e lon1) to
   * (\e lat, \e lon), appropriately signed according to which side of the
   * central meridian (\e lat, \e lon) lies.  \e y is the shortest distance
   * along the meridian from (\e lat0, \e lon0) to (\e lat1, \e lon1), again,
   * appropriately signed according to the initial heading.  [Note that, in the
   * case of prolate ellipsoids, the shortest meridional path from (\e lat0, \e
   * lon0) to (\e lat1, \e lon1) may not be the shortest path.]  This procedure
   * uniquely defines the forward projection except for a small class of points
   * for which there may be two equally short routes for either leg of the
   * path.
   *
   * Because of the properties of geodesics, the (\e x, \e y) grid is
   * orthogonal.  The scale in the easting direction is unity.  The scale, \e
   * k, in the northing direction is unity on the central meridian and
   * increases away from the central meridian.  The projection routines return
   * \e azi, the true bearing of the easting direction, and \e rk = 1/\e k, the
   * reciprocal of the scale in the northing direction.
   *
   * The conversions all take place using a Geodesic object (by default
   * Geodesic::WGS84()).  For more information on geodesics see \ref geodesic.
   * The determination of (\e lat1, \e lon1) in the forward projection is by
   * solving the inverse geodesic problem for (\e lat, \e lon) and its twin
   * obtained by reflection in the meridional plane.  The scale is found by
   * determining where two neighboring geodesics intersecting the central
   * meridian at \e lat1 and \e lat1 + \e dlat1 intersect and taking the ratio
   * of the reduced lengths for the two geodesics between that point and,
   * respectively, (\e lat1, \e lon1) and (\e lat, \e lon).
   *
   * Example of use:
   * \include example-CassiniSoldner.cpp
   *
   * <a href="GeodesicProj.1.html">GeodesicProj</a> is a command-line utility
   * providing access to the functionality of AzimuthalEquidistant, Gnomonic,
   * and CassiniSoldner.
   **********************************************************************/

  class GEOGRAPHICLIB_EXPORT CassiniSoldner {
  private:
    typedef Math::real real;
    Geodesic _earth;
    GeodesicLine _meridian;
    real _sbet0, _cbet0;
    static const unsigned maxit_ = 10;

  public:

    /**
     * Constructor for CassiniSoldner.
     *
     * @param[in] earth the Geodesic object to use for geodesic calculations.
     *   By default this uses the WGS84 ellipsoid.
     *
     * This constructor makes an "uninitialized" object.  Call Reset to set the
     * central latitude and longitude, prior to calling Forward and Reverse.
     **********************************************************************/
    explicit CassiniSoldner(const Geodesic& earth = Geodesic::WGS84());

    /**
     * Constructor for CassiniSoldner specifying a center point.
     *
     * @param[in] lat0 latitude of center point of projection (degrees).
     * @param[in] lon0 longitude of center point of projection (degrees).
     * @param[in] earth the Geodesic object to use for geodesic calculations.
     *   By default this uses the WGS84 ellipsoid.
     *
     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    CassiniSoldner(real lat0, real lon0,
                   const Geodesic& earth = Geodesic::WGS84());

    /**
     * Set the central point of the projection
     *
     * @param[in] lat0 latitude of center point of projection (degrees).
     * @param[in] lon0 longitude of center point of projection (degrees).
     *
     * \e lat0 should be in the range [&minus;90&deg;, 90&deg;].
     **********************************************************************/
    void Reset(real lat0, real lon0);

    /**
     * Forward projection, from geographic to Cassini-Soldner.
     *
     * @param[in] lat latitude of point (degrees).
     * @param[in] lon longitude of point (degrees).
     * @param[out] x easting of point (meters).
     * @param[out] y northing of point (meters).
     * @param[out] azi azimuth of easting direction at point (degrees).
     * @param[out] rk reciprocal of azimuthal northing scale at point.
     *
     * \e lat should be in the range [&minus;90&deg;, 90&deg;].  A call to
     * Forward followed by a call to Reverse will return the original (\e lat,
     * \e lon) (to within roundoff).  The routine does nothing if the origin
     * has not been set.
     **********************************************************************/
    void Forward(real lat, real lon,
                 real& x, real& y, real& azi, real& rk) const;

    /**
     * Reverse projection, from Cassini-Soldner to geographic.
     *
     * @param[in] x easting of point (meters).
     * @param[in] y northing of point (meters).
     * @param[out] lat latitude of point (degrees).
     * @param[out] lon longitude of point (degrees).
     * @param[out] azi azimuth of easting direction at point (degrees).
     * @param[out] rk reciprocal of azimuthal northing scale at point.
     *
     * A call to Reverse followed by a call to Forward will return the original
     * (\e x, \e y) (to within roundoff), provided that \e x and \e y are
     * sufficiently small not to "wrap around" the earth.  The routine does
     * nothing if the origin has not been set.
     **********************************************************************/
    void Reverse(real x, real y,
                 real& lat, real& lon, real& azi, real& rk) const;

    /**
     * CassiniSoldner::Forward without returning the azimuth and scale.
     **********************************************************************/
    void Forward(real lat, real lon,
                 real& x, real& y) const {
      real azi, rk;
      Forward(lat, lon, x, y, azi, rk);
    }

    /**
     * CassiniSoldner::Reverse without returning the azimuth and scale.
     **********************************************************************/
    void Reverse(real x, real y,
                 real& lat, real& lon) const {
      real azi, rk;
      Reverse(x, y, lat, lon, azi, rk);
    }

    /** \name Inspector functions
     **********************************************************************/
    ///@{
    /**
     * @return true if the object has been initialized.
     **********************************************************************/
    bool Init() const { return _meridian.Init(); }

    /**
     * @return \e lat0 the latitude of origin (degrees).
     **********************************************************************/
    Math::real LatitudeOrigin() const
    { return _meridian.Latitude(); }

    /**
     * @return \e lon0 the longitude of origin (degrees).
     **********************************************************************/
    Math::real LongitudeOrigin() const
    { return _meridian.Longitude(); }

    /**
     * @return \e a the equatorial radius of the ellipsoid (meters).  This is
     *   the value inherited from the Geodesic object used in the constructor.
     **********************************************************************/
    Math::real MajorRadius() const { return _earth.MajorRadius(); }

    /**
     * @return \e f the flattening of the ellipsoid.  This is the value
     *   inherited from the Geodesic object used in the constructor.
     **********************************************************************/
    Math::real Flattening() const { return _earth.Flattening(); }
    ///@}

    /// \cond SKIP
    /**
     * <b>DEPRECATED</b>
     * @return \e r the inverse flattening of the ellipsoid.
     **********************************************************************/
    Math::real InverseFlattening() const
    { return _earth.InverseFlattening(); }
    /// \endcond
  };

} // namespace GeographicLib

#endif  // GEOGRAPHICLIB_CASSINISOLDNER_HPP