This file is indexed.

/usr/include/gecode/int/circuit/base.hpp is in libgecode-dev 4.4.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/* -*- mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
 *  Main authors:
 *     Christian Schulte <schulte@gecode.org>
 *
 *  Copyright:
 *     Christian Schulte, 2007
 *
 *  Last modified:
 *     $Date: 2012-09-07 17:31:22 +0200 (Fri, 07 Sep 2012) $ by $Author: schulte $
 *     $Revision: 13068 $
 *
 *  This file is part of Gecode, the generic constraint
 *  development environment:
 *     http://www.gecode.org
 *
 *  Permission is hereby granted, free of charge, to any person obtaining
 *  a copy of this software and associated documentation files (the
 *  "Software"), to deal in the Software without restriction, including
 *  without limitation the rights to use, copy, modify, merge, publish,
 *  distribute, sublicense, and/or sell copies of the Software, and to
 *  permit persons to whom the Software is furnished to do so, subject to
 *  the following conditions:
 *
 *  The above copyright notice and this permission notice shall be
 *  included in all copies or substantial portions of the Software.
 *
 *  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 *  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 *  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 *  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 *  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 *  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 *  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

namespace Gecode { namespace Int { namespace Circuit {

  template<class View, class Offset>
  forceinline
  Base<View,Offset>::Base(Home home, ViewArray<View>& x, Offset& o0)
    : NaryPropagator<View,Int::PC_INT_DOM>(home,x), y(home,x), o(o0) {
    home.notice(*this,AP_WEAKLY);
  }

  template<class View, class Offset>
  forceinline
  Base<View,Offset>::Base(Space& home, bool share, Base<View,Offset>& p)
    : NaryPropagator<View,Int::PC_INT_DOM>(home,share,p) {
    o.update(p.o);
    y.update(home,share,p.y);
  }

  /// Information required for non-recursive checking for a single scc
  template<class View>
  class SsccInfo {
  public:
    int min, low, pre;
    Int::ViewValues<View> v;
  };

  /// Information for performing a recorded tell
  template<class View>
  class TellInfo {
  public:
    View x; int n;
  };

  template<class View, class Offset>
  ExecStatus
  Base<View,Offset>::connected(Space& home) {
    int n = x.size();

    /// First non-assigned node.
    int start = 0;
    while (x[start].assigned()) {
      start = o(x[start]).val();
      if (start == 0) break;
    }

    /// Information needed for checking scc's
    Region r(home);
    typedef typename Offset::ViewType OView;
    SsccInfo<OView>* si = r.alloc<SsccInfo<OView> >(n);
    unsigned int n_edges = 0;
    for (int i=n; i--; ) {
      n_edges += x[i].size();
      si[i].pre=-1;
    }

    // Stack to remember which nodes have not been processed completely
    Support::StaticStack<int,Region> next(r,n);

    // Array to remember which mandatory tells need to be done
    TellInfo<OView>* eq = r.alloc<TellInfo<OView> >(n);
    int n_eq = 0;

    // Array to remember which edges need to be pruned
    TellInfo<OView>* nq = r.alloc<TellInfo<OView> >(n_edges);
    int n_nq = 0;

    /*
     * Check whether there is a single strongly connected component.
     * This is a downstripped version of Tarjan's algorithm as
     * the computation of sccs proper is not needed. In addition, it
     * checks a mandatory condition for a graph to be Hamiltonian
     * (due to Mats Carlsson).
     *
     * To quote Mats: Suppose you do a depth-first search of the graph.
     * In that search, the root node will have a number of child subtrees
     * T1, ..., Tn. By construction, if i<j then there is no edge from
     * Ti to Tj. The necessary condition for Hamiltonianicity is that
     * there be an edge from Ti+1 to Ti, for 0 < i < n.
     *
     * In addition, we do the following: if there is only a single edge
     * from Ti+1 to Ti, then it must be mandatory and the variable must
     * be assigned to that value.
     *
     * The same holds true for a back edge from T0 to the root node.
     *
     * Then, all edges that reach from Ti+k+1 to Ti can be pruned.
     *
     */

    {
      // Start always at node start
      int i = start;
      // Counter for scc
      int cnt = 0;
      // Smallest preorder number of last subtree (initially, the root node)
      int subtree_min = 0;
      // Largest preorder number of last subtree (initially, the root node)
      int subtree_max = 0;
      // Number of back edges into last subtree or root
      int back = 0;
    start:
      si[i].min = si[i].pre = si[i].low = cnt++;
      si[i].v.init(o(x[i]));
      do {
        if (si[si[i].v.val()].pre < 0) {
          next.push(i);
          i=si[i].v.val();
          goto start;
        } else if ((subtree_min <= si[si[i].v.val()].pre) &&
                 (si[si[i].v.val()].pre <= subtree_max)) {
          back++;
          eq[n_eq].x = o(x[i]);
          eq[n_eq].n = si[i].v.val();
        } else if (si[si[i].v.val()].pre < subtree_min) {
          nq[n_nq].x = o(x[i]);
          nq[n_nq].n = si[i].v.val();
          n_nq++;
        }
      cont:
        if (si[si[i].v.val()].low < si[i].min)
          si[i].min = si[si[i].v.val()].low;
        ++si[i].v;
      } while (si[i].v());
      if (si[i].min < si[i].low) {
        si[i].low = si[i].min;
      } else if (i != start) {
        // If it is not the first node visited, there is more than one SCC
        return ES_FAILED;
      }
      if (!next.empty()) {
        i=next.pop();
        if (i == start) {
          // No back edge
          if (back == 0)
            return ES_FAILED;
          // Exactly one back edge, make it mandatory (keep topmost entry)
          if (back == 1)
            n_eq++;
          back        = 0;
          subtree_min = subtree_max+1;
          subtree_max = cnt-1;
        }
        goto cont;
      }
      // Whether all nodes have been visited
      if (cnt != n)
        return ES_FAILED;
      ExecStatus es = ES_FIX;
      // Assign all mandatory edges
      while (n_eq-- > 0) {
        ModEvent me = eq[n_eq].x.eq(home,eq[n_eq].n);
        if (me_failed(me))
          return ES_FAILED;
        if (me_modified(me))
          es = ES_NOFIX;
      }
      // Remove all edges that would require a non-simple cycle
      while (n_nq-- > 0) {
        ModEvent me = nq[n_nq].x.nq(home,nq[n_nq].n);
        if (me_failed(me))
          return ES_FAILED;
        if (me_modified(me))
          es = ES_NOFIX;
      }
      return es;
    }
  }

  template<class View, class Offset>
  ExecStatus
  Base<View,Offset>::path(Space& home) {
    // Prunes that partial assigned paths are not completed to cycles

    int n=x.size();

    Region r(home);

    // The path starting at assigned x[i] ends at x[end[j]] which is
    // not assigned.
    int* end = r.alloc<int>(n);
    for (int i=n; i--; )
      end[i]=-1;

    // A stack that records all indices i such that end[i] != -1
    Support::StaticStack<int,Region> tell(r,n);

    typedef typename Offset::ViewType OView;
    for (int i=y.size(); i--; ) {
      assert(!y[i].assigned());
      // Non-assigned views serve as starting points for assigned paths
      Int::ViewValues<OView> v(o(y[i]));
      // Try all connected values
      do {
        int j0=v.val();
        // Starting point for not yet followed assigned path found
        if (x[j0].assigned() && (end[j0] < 0)) {
          // Follow assigned path until non-assigned view:
          // all assigned view on the paths can be skipped, as
          // if x[i] is assigned to j, then x[j] will only have
          // x[i] as predecessor due to propagating distinct.
          int j = j0;
          do {
            j=o(x[j]).val();
          } while (x[j].assigned());
          // Now there cannot be a cycle from x[j] to x[v.val()]!
          // However, the tell cannot be done here as j might be
          // equal to i and might hence kill the iterator v!
          end[j0]=j; tell.push(j0);
        }
        ++v;
      } while (v());
    }

    // Now do the tells based on the end information
    while (!tell.empty()) {
      int i = tell.pop();
      assert(end[i] >= 0);
      GECODE_ME_CHECK(o(x[end[i]]).nq(home,i));
    }
    return ES_NOFIX;
  }

  template<class View, class Offset>
  forceinline size_t
  Base<View,Offset>::dispose(Space& home) {
    home.ignore(*this,AP_WEAKLY);
    (void) NaryPropagator<View,Int::PC_INT_DOM>::dispose(home);
    return sizeof(*this);
  }

}}}

// STATISTICS: int-prop