This file is indexed.

/usr/include/libevocosm/evocosm.h is in libevocosm-dev 4.0.2-3ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
    Evocosm is a C++ framework for implementing evolutionary algorithms.

    Copyright 2011 Scott Robert Ladd. All rights reserved.

    Evocosm is user-supported open source software. Its continued development is dependent
    on financial support from the community. You can provide funding by visiting the Evocosm
    website at:

        http://www.coyotegulch.com

    You may license Evocosm in one of two fashions:

    1) Simplified BSD License (FreeBSD License)

    Redistribution and use in source and binary forms, with or without modification, are
    permitted provided that the following conditions are met:

    1.  Redistributions of source code must retain the above copyright notice, this list of
        conditions and the following disclaimer.

    2.  Redistributions in binary form must reproduce the above copyright notice, this list
        of conditions and the following disclaimer in the documentation and/or other materials
        provided with the distribution.

    THIS SOFTWARE IS PROVIDED BY SCOTT ROBERT LADD ``AS IS'' AND ANY EXPRESS OR IMPLIED
    WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
    FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SCOTT ROBERT LADD OR
    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
    ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
    ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

    The views and conclusions contained in the software and documentation are those of the
    authors and should not be interpreted as representing official policies, either expressed
    or implied, of Scott Robert Ladd.

    2) Closed-Source Proprietary License

    If your project is a closed-source or proprietary project, the Simplified BSD License may
    not be appropriate or desirable. In such cases, contact the Evocosm copyright holder to
    arrange your purchase of an appropriate license.

    The author can be contacted at:

          scott.ladd@coyotegulch.com
          scott.ladd@gmail.com
          http:www.coyotegulch.com
*/

#if !defined(LIBEVOCOSM_EVOCOSM_H)
#define LIBEVOCOSM_EVOCOSM_H

#if defined(_MSC_VER)
#pragma warning (disable : 4786)
#endif

#if defined(_OPENMP)
#include <omp.h>
#endif

#include <unistd.h>

// Standard C++ library
#include <vector>

// libevocosm
#include "validator.h"
#include "listener.h"
#include "organism.h"
#include "landscape.h"
#include "mutator.h"
#include "reproducer.h"
#include "scaler.h"
#include "selector.h"
#include "analyzer.h"

//! A toolkit and framework for implementing evolutionary algorithms.
/*!
    Evocosm classes abstract the fundamental components of an
    evolutionary algorithm. Evolutionary algorithms come in a variety of shapes
    and flavors, but at their core, they all share certain characteristics:
    populations that reproduce and mutate through a series of generations,
    producing future generations based on some measure of fitness. An amazing
    variety of algorithms can be built on that general framework, which lead
    me to construct a set of core classes as the basis for future applications.
*/
namespace libevocosm
{
    using std::vector;

    //! Associates organisms with the components of an evolutionary system.
    /*!
        This is where it all comes together: An evocosm binds a
        evocosm of organisms to a set of objects that define how
        those organisms evolve.
        \param OrganismType - The type of organism
    */
    template <class OrganismType>
    class evocosm : protected globals
    {
    protected:
        //! The populations of organisms
        vector<OrganismType> & m_population;

        //! Fitness landscapes common to all populations
        landscape<OrganismType> & m_landscape;

        //! A mutator to randomly influence genes
        mutator<OrganismType> & m_mutator;

        //! Creates new organisms
        reproducer<OrganismType> & m_reproducer;

        //! Scales the fitness of the evocosm
        scaler<OrganismType> & m_scaler;

        //! Selects organisms that survive from one generation to the next
        selector<OrganismType> & m_selector;

        //! Reports the a evocosm for analysis or display
        analyzer<OrganismType> & m_analyzer;

        //! A listener for evocosm progress
        listener<OrganismType> & m_listener;

        //! Count of iterations made
        size_t m_iteration;

        //! Number microseconds for process to sleep on yield
        unsigned int m_sleep_time;

    public:
        //! Creation constructor
        /*!
            Creates a new evocosm. Think of an evocosm as a director, a tool for
            associating organisms with their landscape.
            Note that these arguments are modifiable references, and that the
            referenced objects must continue to exist during the lifetime of the
            evocosm.
            \param a_population Initial population of organisms
            \param a_landscape Initial set of landscaoes for testing organism fitness
            \param a_mutator - A concrete implementation of mutator
            \param a_reproducer - A concrete implementation of reproducer
            \param a_scaler - A concrete implementation of scaler
            \param a_selector - A concrete implementation of selector
            \param a_analyzer - A concrete implementation of analyzer
            \param a_listener - a listener for events
        */
        evocosm(vector<OrganismType> &     a_population,
                landscape<OrganismType> &  a_landscape,
                mutator<OrganismType> &    a_mutator,
                reproducer<OrganismType> & a_reproducer,
                scaler<OrganismType> &     a_scaler,
                selector<OrganismType> &   a_selector,
                analyzer<OrganismType> &   a_analyzer,
                listener<OrganismType> &   a_listener);

        //! Copy constructor
        /*!
            Creates a new evocosm identical to an existing one.
            \param a_source - The source object
        */
        evocosm(const evocosm<OrganismType> & a_source);

        //! Virtual destructor
        /*!
            A virtual destructor. By default, it does nothing; this is
            a placeholder that identifies this class as a potential base,
            ensuring that objects of a derived class will have their
            destructors called if they are destroyed through a base-class
            pointer.
        */
        virtual ~evocosm();

        //! Assignment operator
        /*!
            Assigns an existing object the state of another.
            \param a_source - The source object
            \return Reference to target object
        */
        evocosm & operator = (const evocosm<OrganismType> & a_source);

        //! Compute next generation
        /*!
            A generation represents a cycle in the life of an evocosm; this
            function performs one sequence of fitness testing & scaling,
            reporting, breeding, and mutation. This method can be
            replaced by in a derived class to define a different processing
            sequence; the default sequence defined here is good for most
            evolutionary algorithms I've created.
            \return Returns <i>true</i> when the generation has reached a specific goal.
        */
        virtual bool run_generation();

        //! Directly view population
        /*! <b>Use with caution!</b> This function provides direct read-write
            access to an evocosm's population. This is necessary when the
            organisms need special manipulation, such as when they can not be
            randomized by a default constructor.
        */
        vector<OrganismType> & get_population()
        {
            return m_population;
        }

        //! Get the sleep time property value
        /*!
            Get the sleep time setting for this listerner.
            /return current value of sleep time (microseconds)
        */
        unsigned int get_sleep_time()
        {
            return m_sleep_time;
        }

        //! Set the sleep time property value
        /*!
            Set the sleep time property value.
            /param a_sleep_time new value of sleep time (microseconds)
        */
        void set_sleep_time(unsigned int a_sleep_time)
        {
            m_sleep_time = a_sleep_time;
        }

    protected:
        //! Yield
        /*!
            Evocosm periodically invokes this function to allow other processes
            to run. In most cases, this will be some sort of platform-specific
            sleep function, such as usleep.
        */
        void yield()
        {
            if (m_sleep_time > 0)
            {
              #if defined(_MSC_VER)
                Sleep(m_sleep_time);
              #else
                usleep((useconds_t)m_sleep_time);
              #endif
            }
        }

    };

    // constructors
    template <class OrganismType>
    evocosm<OrganismType>::evocosm(vector<OrganismType> &     a_population,
                                   landscape<OrganismType> &  a_landscape,
                                   mutator<OrganismType> &    a_mutator,
                                   reproducer<OrganismType> & a_reproducer,
                                   scaler<OrganismType> &     a_scaler,
                                   selector<OrganismType> &   a_selector,
                                   analyzer<OrganismType> &   a_analyzer,
                                   listener<OrganismType> &   a_listener)
      : m_population(a_population),
        m_landscape(a_landscape),
        m_mutator(a_mutator),
        m_reproducer(a_reproducer),
        m_scaler(a_scaler),
        m_selector(a_selector),
        m_analyzer(a_analyzer),
        m_listener(a_listener),
        m_iteration(0),
        m_sleep_time(10000) // default to 10ms sleep time
    {
        // nada
    }

    // copy constructor
    template <class OrganismType>
    evocosm<OrganismType>::evocosm(const evocosm<OrganismType> & a_source)
      : m_population(a_source.a_population),
        m_landscape(a_source.m_landscape),
        m_mutator(a_source.m_mutator),
        m_reproducer(a_source.m_reproducer),
        m_scaler(a_source.m_scaler),
        m_selector(a_source.m_selector),
        m_analyzer(a_source.m_analyzer),
        m_listener(a_source.m_listener),
        m_iteration(a_source.m_iteration),
        m_sleep_time(a_source.m_sleep_time)
    {
        // nada
    }

    // destructor
    template <class OrganismType>
    evocosm<OrganismType>::~evocosm()
    {
        // nada
    }

    // assignment operator
    template <class OrganismType>
    evocosm<OrganismType> & evocosm<OrganismType>::operator = (const evocosm<OrganismType> & a_source)
    {
        m_population  = a_source.m_population;
        m_landscape   = a_source.m_landscape;
        m_scaler      = a_source.m_scaler;
        m_analyzer    = a_source.m_analyzer;
        m_listener    = a_source.m_analyzer;
        m_iteration   = a_source.m_iteration;
        m_sleep_time  = a_source.m_sleep_time;

        return *this;
    }

    // compute next generation
    template <class OrganismType>
    bool evocosm<OrganismType>::run_generation()
    {
        bool keep_going = true;

        OrganismType * best = NULL;

        ++m_iteration;

        // announce beginning of new generation
        m_listener.ping_generation_begin(m_population, m_iteration);

        // check population fitness
        m_landscape.test(m_population);
        yield();

        // we're done testing this generation
        m_listener.ping_generation_end(m_population, m_iteration);
        yield();

        // analyze the results of testing, and decide if we're going to stop or not
        keep_going = m_analyzer.analyze(m_population, m_iteration);

        if (keep_going)
        {
            // fitness scaling
            m_scaler.scale_fitness(m_population);
            yield();

            // get survivors and number of chromosomes to add
            vector<OrganismType> survivors = m_selector.select_survivors(m_population);
            yield();

            // give birth to new chromosomes
            vector<OrganismType> children = m_reproducer.breed(m_population, m_population.size() - survivors.size());
            yield();

            // debugging only
            //fitness_stats<OrganismType> s(survivors);
            //fitness_stats<OrganismType> c(children);

            // mutate the child chromosomes
            m_mutator.mutate(children);
            yield();

            // append children to survivors and replace existing population form combined vector
            survivors.insert(survivors.end(),children.begin(),children.end());
            m_population = survivors;
            yield();
        }
        else
        {
            m_listener.run_complete(m_population);
        }

        return keep_going;
    }
};

#endif