/usr/include/dune/geometry/multilineargeometry.hh is in libdune-geometry-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
#define DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
#include <cassert>
#include <limits>
#include <vector>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/typetraits.hh>
#include <dune/geometry/referenceelements.hh>
#include <dune/geometry/type.hh>
#include <dune/geometry/genericgeometry/geometrytraits.hh>
#include <dune/geometry/genericgeometry/matrixhelper.hh>
namespace Dune
{
// External Forward Declarations
// -----------------------------
template< class ctype, int dim >
class ReferenceElement;
template< class ctype, int dim >
struct ReferenceElements;
// MultiLinearGeometryTraits
// -------------------------
/** \brief default traits class for MultiLinearGeometry
*
* The MultiLinearGeometry (and CachedMultiLinearGeometry) allow tweaking
* some implementation details through a traits class.
*
* This structure provides the default values.
*
* \tparam ct coordinate type
*/
template< class ct >
struct MultiLinearGeometryTraits
{
/** \brief helper structure containing some matrix routines
*
* This helper allows exchanging the matrix inversion algorithms.
* It must provide the following static methods:
* \code
* template< int m, int n >
* static ctype sqrtDetAAT ( const FieldMatrix< ctype, m, n > &A );
*
* template< int m, int n >
* static ctype rightInvA ( const FieldMatrix< ctype, m, n > &A,
* FieldMatrix< ctype, n, m > &ret );
*
* template< int m, int n >
* static void xTRightInvA ( const FieldMatrix< ctype, m, n > &A,
* const FieldVector< ctype, n > &x,
* FieldVector< ctype, m > &y );
* \endcode
*/
typedef GenericGeometry::MatrixHelper< GenericGeometry::DuneCoordTraits< ct > > MatrixHelper;
/** \brief tolerance to numerical algorithms */
static ct tolerance () { return ct( 16 ) * std::numeric_limits< ct >::epsilon(); }
/** \brief template specifying the storage for the corners
*
* Internally, the MultiLinearGeometry needs to store the corners of the
* geometry.
*
* The corner storage may be chosen depending on geometry dimension and
* coordinate dimension. It is required to contain a type named Type, e.g.,
* \code
* template< int mydim, int cdim >
* struct CornerStorage
* {
* typedef std::vector< FieldVector< ctype, cdim > > Type;
* };
* \endcode
* By default, a std::vector of FieldVector is used.
*
* Apart from being copy constructable and assignable, the corner storage
* must provide a constant input iterator, i.e., it must define a type
* const_iterator and a pair of constant begin / end methods.
*
* \tparam mydim geometry dimension
* \tparam cdim coordinate dimension
*/
template< int mydim, int cdim >
struct CornerStorage
{
typedef std::vector< FieldVector< ct, cdim > > Type;
};
/** \brief will there be only one geometry type for a dimension?
*
* If there is only a single geometry type for a certain dimension,
* <em>hasSingleGeometryType::v</em> can be set to true.
* Supporting only one geometry type might yield a gain in performance.
*
* If <em>hasSingleGeometryType::v</em> is set to true, an additional
* parameter <em>topologyId</em> is required.
* Here's an example:
* \code
* static const unsigned int topologyId = SimplexTopology< dim >::type::id;
* \endcode
*/
template< int dim >
struct hasSingleGeometryType
{
static const bool v = false;
static const unsigned int topologyId = ~0u;
};
};
// MultiLinearGeometry
// -------------------
/** \brief generic geometry implementation based on corner coordinates
*
* Based on the recursive definition of the reference elements, the
* MultiLinearGeometry provides a generic implementation of a geometry given
* the corner coordinates.
*
* The geometric mapping is multilinear in the classical sense only in the
* case of cubes; for simplices it is linear.
* The name is still justified, because the mapping satisfies the important
* property of begin linear along edges.
*
* \tparam ct coordinate type
* \tparam mydim geometry dimension
* \tparam cdim coordinate dimension
* \tparam Traits traits allowing to tweak some implementation details
* (optional)
*
* The requirements on the traits are documented along with their default,
* MultiLinearGeometryTraits.
*/
template< class ct, int mydim, int cdim, class Traits = MultiLinearGeometryTraits< ct > >
class MultiLinearGeometry
{
typedef MultiLinearGeometry< ct, mydim, cdim, Traits > This;
public:
//! coordinate type
typedef ct ctype;
//! geometry dimension
static const int mydimension= mydim;
//! coordinate dimension
static const int coorddimension = cdim;
//! type of local coordinates
typedef FieldVector< ctype, mydimension > LocalCoordinate;
//! type of global coordinates
typedef FieldVector< ctype, coorddimension > GlobalCoordinate;
//! type of jacobian transposed
typedef FieldMatrix< ctype, mydimension, coorddimension > JacobianTransposed;
//! type of jacobian inverse transposed
class JacobianInverseTransposed;
//! type of reference element
typedef Dune::ReferenceElement< ctype, mydimension > ReferenceElement;
private:
static const bool hasSingleGeometryType = Traits::template hasSingleGeometryType< mydimension >::v;
protected:
typedef typename Traits::MatrixHelper MatrixHelper;
typedef typename conditional< hasSingleGeometryType, integral_constant< unsigned int, Traits::template hasSingleGeometryType< mydimension >::topologyId >, unsigned int >::type TopologyId;
typedef Dune::ReferenceElements< ctype, mydimension > ReferenceElements;
private:
typedef typename Traits::template CornerStorage< mydimension, coorddimension >::Type::const_iterator CornerIterator;
public:
/** \brief constructor
*
* \param[in] refElement reference element for the geometry
* \param[in] corners corners to store internally
*
* \note The type of corners is actually a template argument.
* It is only required that the internal corner storage can be
* constructed from this object.
*/
template< class Corners >
MultiLinearGeometry ( const ReferenceElement &refElement,
const Corners &corners )
: refElement_( &refElement ),
corners_( corners )
{}
/** \brief constructor
*
* \param[in] gt geometry type
* \param[in] corners corners to store internally
*
* \note The type of corners is actually a template argument.
* It is only required that the internal corner storage can be
* constructed from this object.
*/
template< class Corners >
MultiLinearGeometry ( Dune::GeometryType gt,
const Corners &corners )
: refElement_( &ReferenceElements::general( gt ) ),
corners_( corners )
{}
/** \brief is this mapping affine? */
bool affine () const
{
JacobianTransposed jt;
return affine( jt );
}
/** \brief obtain the name of the reference element */
Dune::GeometryType type () const { return GeometryType( toUnsignedInt(topologyId()), mydimension ); }
/** \brief obtain number of corners of the corresponding reference element */
int corners () const { return refElement().size( mydimension ); }
/** \brief obtain coordinates of the i-th corner */
GlobalCoordinate corner ( int i ) const
{
assert( (i >= 0) && (i < corners()) );
return corners_[ i ];
}
/** \brief obtain the centroid of the mapping's image */
GlobalCoordinate center () const { return global( refElement().position( 0, 0 ) ); }
/** \brief evaluate the mapping
*
* \param[in] local local coordinate to map
*
* \returns corresponding global coordinate
*/
GlobalCoordinate global ( const LocalCoordinate &local ) const
{
CornerIterator cit = corners_.begin();
GlobalCoordinate y;
global< false >( topologyId(), integral_constant< int, mydimension >(), cit, ctype( 1 ), local, ctype( 1 ), y );
return y;
}
/** \brief evaluate the inverse mapping
*
* \param[in] global global coordinate to map
*
* \return corresponding local coordinate
*
* \note For given global coordinate y the returned local coordinate x that minimizes
* the following function over the local coordinate space spanned by the reference element.
* \code
* (global( x ) - y).two_norm()
* \endcode
*/
LocalCoordinate local ( const GlobalCoordinate &global ) const
{
const ctype tolerance = Traits::tolerance();
LocalCoordinate x = refElement().position( 0, 0 );
LocalCoordinate dx;
do
{
// Newton's method: DF^n dx^n = F^n, x^{n+1} -= dx^n
const GlobalCoordinate dglobal = (*this).global( x ) - global;
MatrixHelper::template xTRightInvA< mydimension, coorddimension >( jacobianTransposed( x ), dglobal, dx );
x -= dx;
} while( dx.two_norm2() > tolerance );
return x;
}
/** \brief obtain the integration element
*
* If the Jacobian of the mapping is denoted by $J(x)$, the integration
* integration element \f$\mu(x)\f$ is given by
* \f[ \mu(x) = \sqrt{|\det (J^T(x) J(x))|}.\f]
*
* \param[in] local local coordinate to evaluate the integration element in
*
* \returns the integration element \f$\mu(x)\f$.
*
* \note For affine mappings, it is more efficient to call
* jacobianInverseTransposed before integrationElement, if both
* are required.
*/
ctype integrationElement ( const LocalCoordinate &local ) const
{
return MatrixHelper::template sqrtDetAAT< mydimension, coorddimension >( jacobianTransposed( local ) );
}
/** \brief obtain the volume of the mapping's image
*
* \note The current implementation just returns
* \code
* integrationElement( refElement().position( 0, 0 ) ) * refElement().volume()
* \endcode
* which is wrong for n-linear surface maps and other nonlinear maps.
*/
ctype volume () const
{
return integrationElement( refElement().position( 0, 0 ) ) * refElement().volume();
}
/** \brief obtain the transposed of the Jacobian
*
* \param[in] local local coordinate to evaluate Jacobian in
*
* \returns a reference to the transposed of the Jacobian
*
* \note The returned reference is reused on the next call to
* JacobianTransposed, destroying the previous value.
*/
JacobianTransposed jacobianTransposed ( const LocalCoordinate &local ) const
{
JacobianTransposed jt;
CornerIterator cit = corners_.begin();
jacobianTransposed< false >( topologyId(), integral_constant< int, mydimension >(), cit, ctype( 1 ), local, ctype( 1 ), jt );
return jt;
}
/** \brief obtain the transposed of the Jacobian's inverse
*
* The Jacobian's inverse is defined as a pseudo-inverse. If we denote
* the Jacobian by \f$J(x)\f$, the following condition holds:
* \f[J^{-1}(x) J(x) = I.\f]
*/
JacobianInverseTransposed jacobianInverseTransposed ( const LocalCoordinate &local ) const;
protected:
const ReferenceElement &refElement () const { return *refElement_; }
TopologyId topologyId () const
{
return topologyId( integral_constant< bool, hasSingleGeometryType >() );
}
template< bool add, int dim >
static void global ( TopologyId topologyId, integral_constant< int, dim >,
CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
const ctype &rf, GlobalCoordinate &y );
template< bool add >
static void global ( TopologyId topologyId, integral_constant< int, 0 >,
CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
const ctype &rf, GlobalCoordinate &y );
template< bool add, int rows, int dim >
static void jacobianTransposed ( TopologyId topologyId, integral_constant< int, dim >,
CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt );
template< bool add, int rows >
static void jacobianTransposed ( TopologyId topologyId, integral_constant< int, 0 >,
CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt );
template< int dim >
static bool affine ( TopologyId topologyId, integral_constant< int, dim >, CornerIterator &cit, JacobianTransposed &jt );
static bool affine ( TopologyId topologyId, integral_constant< int, 0 >, CornerIterator &cit, JacobianTransposed &jt );
bool affine ( JacobianTransposed &jacobianTransposed ) const
{
CornerIterator cit = corners_.begin();
return affine( topologyId(), integral_constant< int, mydimension >(), cit, jacobianTransposed );
}
private:
// The following methods are needed to convert the return type of topologyId to
// unsigned int with g++-4.4. It has problems casting integral_constant to the
// integral type.
static unsigned int toUnsignedInt(unsigned int i) { return i; }
template<unsigned int v>
static unsigned int toUnsignedInt(std::integral_constant<unsigned int,v> i) { return v; }
TopologyId topologyId ( integral_constant< bool, true > ) const { return TopologyId(); }
unsigned int topologyId ( integral_constant< bool, false > ) const { return refElement().type().id(); }
const ReferenceElement *refElement_;
typename Traits::template CornerStorage< mydimension, coorddimension >::Type corners_;
};
// MultiLinearGeometry::JacobianInverseTransposed
// ----------------------------------------------
template< class ct, int mydim, int cdim, class Traits >
class MultiLinearGeometry< ct, mydim, cdim, Traits >::JacobianInverseTransposed
: public FieldMatrix< ctype, coorddimension, mydimension >
{
typedef FieldMatrix< ctype, coorddimension, mydimension > Base;
public:
void setup ( const JacobianTransposed &jt )
{
detInv_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jt, static_cast< Base & >( *this ) );
}
void setupDeterminant ( const JacobianTransposed &jt )
{
detInv_ = MatrixHelper::template sqrtDetAAT< mydimension, coorddimension >( jt );
}
ctype det () const { return ctype( 1 ) / detInv_; }
ctype detInv () const { return detInv_; }
private:
ctype detInv_;
};
/** \brief Implement a MultiLinearGeometry with additional caching
*
* This class implements the same interface and functionality as MultiLinearGeometry.
* However, it additionally implements caching for various results.
*
* \tparam ct coordinate type
* \tparam mydim geometry dimension
* \tparam cdim coordinate dimension
* \tparam Traits traits allowing to tweak some implementation details
* (optional)
*
*/
template< class ct, int mydim, int cdim, class Traits = MultiLinearGeometryTraits< ct > >
class CachedMultiLinearGeometry
: public MultiLinearGeometry< ct, mydim, cdim, Traits >
{
typedef CachedMultiLinearGeometry< ct, mydim, cdim, Traits > This;
typedef MultiLinearGeometry< ct, mydim, cdim, Traits > Base;
protected:
typedef typename Base::MatrixHelper MatrixHelper;
public:
typedef typename Base::ReferenceElement ReferenceElement;
typedef typename Base::ctype ctype;
using Base::mydimension;
using Base::coorddimension;
typedef typename Base::LocalCoordinate LocalCoordinate;
typedef typename Base::GlobalCoordinate GlobalCoordinate;
typedef typename Base::JacobianTransposed JacobianTransposed;
typedef typename Base::JacobianInverseTransposed JacobianInverseTransposed;
template< class CornerStorage >
CachedMultiLinearGeometry ( const ReferenceElement &refElement, const CornerStorage &cornerStorage )
: Base( refElement, cornerStorage ),
affine_( Base::affine( jacobianTransposed_ ) ),
jacobianInverseTransposedComputed_( false ),
integrationElementComputed_( false )
{}
template< class CornerStorage >
CachedMultiLinearGeometry ( Dune::GeometryType gt, const CornerStorage &cornerStorage )
: Base( gt, cornerStorage ),
affine_( Base::affine( jacobianTransposed_ ) ),
jacobianInverseTransposedComputed_( false ),
integrationElementComputed_( false )
{}
/** \brief is this mapping affine? */
bool affine () const { return affine_; }
using Base::corner;
/** \brief obtain the centroid of the mapping's image */
GlobalCoordinate center () const { return global( refElement().position( 0, 0 ) ); }
/** \brief evaluate the mapping
*
* \param[in] local local coordinate to map
*
* \returns corresponding global coordinate
*/
GlobalCoordinate global ( const LocalCoordinate &local ) const
{
if( affine() )
{
GlobalCoordinate global( corner( 0 ) );
jacobianTransposed_.umtv( local, global );
return global;
}
else
return Base::global( local );
}
/** \brief evaluate the inverse mapping
*
* \param[in] global global coordinate to map
*
* \return corresponding local coordinate
*
* \note For given global coordinate y the returned local coordinate x that minimizes
* the following function over the local coordinate space spanned by the reference element.
* \code
* (global( x ) - y).two_norm()
* \endcode
*/
LocalCoordinate local ( const GlobalCoordinate &global ) const
{
if( affine() )
{
LocalCoordinate local;
if( jacobianInverseTransposedComputed_ )
jacobianInverseTransposed_.mtv( global - corner( 0 ), local );
else
MatrixHelper::template xTRightInvA< mydimension, coorddimension >( jacobianTransposed_, global - corner( 0 ), local );
return local;
}
else
return Base::local( global );
}
/** \brief obtain the integration element
*
* If the Jacobian of the mapping is denoted by $J(x)$, the integration
* integration element \f$\mu(x)\f$ is given by
* \f[ \mu(x) = \sqrt{|\det (J^T(x) J(x))|}.\f]
*
* \param[in] local local coordinate to evaluate the integration element in
*
* \returns the integration element \f$\mu(x)\f$.
*
* \note For affine mappings, it is more efficient to call
* jacobianInverseTransposed before integrationElement, if both
* are required.
*/
ctype integrationElement ( const LocalCoordinate &local ) const
{
if( affine() )
{
if( !integrationElementComputed_ )
{
jacobianInverseTransposed_.setupDeterminant( jacobianTransposed_ );
integrationElementComputed_ = true;
}
return jacobianInverseTransposed_.detInv();
}
else
return Base::integrationElement( local );
}
/** \brief obtain the volume of the mapping's image */
ctype volume () const
{
if( affine() )
return integrationElement( refElement().position( 0, 0 ) ) * refElement().volume();
else
return Base::volume();
}
/** \brief obtain the transposed of the Jacobian
*
* \param[in] local local coordinate to evaluate Jacobian in
*
* \returns a reference to the transposed of the Jacobian
*
* \note The returned reference is reused on the next call to
* JacobianTransposed, destroying the previous value.
*/
JacobianTransposed jacobianTransposed ( const LocalCoordinate &local ) const
{
if( affine() )
return jacobianTransposed_;
else
return Base::jacobianTransposed( local );
}
/** \brief obtain the transposed of the Jacobian's inverse
*
* The Jacobian's inverse is defined as a pseudo-inverse. If we denote
* the Jacobian by \f$J(x)\f$, the following condition holds:
* \f[J^{-1}(x) J(x) = I.\f]
*/
JacobianInverseTransposed jacobianInverseTransposed ( const LocalCoordinate &local ) const
{
if( affine() )
{
if( !jacobianInverseTransposedComputed_ )
{
jacobianInverseTransposed_.setup( jacobianTransposed_ );
jacobianInverseTransposedComputed_ = true;
integrationElementComputed_ = true;
}
return jacobianInverseTransposed_;
}
else
return Base::jacobianInverseTransposed( local );
}
protected:
using Base::refElement;
private:
mutable JacobianTransposed jacobianTransposed_;
mutable JacobianInverseTransposed jacobianInverseTransposed_;
mutable bool affine_ : 1;
mutable bool jacobianInverseTransposedComputed_ : 1;
mutable bool integrationElementComputed_ : 1;
};
// Implementation of MultiLinearGeometry
// -------------------------------------
template< class ct, int mydim, int cdim, class Traits >
inline typename MultiLinearGeometry< ct, mydim, cdim, Traits >::JacobianInverseTransposed
MultiLinearGeometry< ct, mydim, cdim, Traits >::jacobianInverseTransposed ( const LocalCoordinate &local ) const
{
JacobianInverseTransposed jit;
jit.setup( jacobianTransposed( local ) );
return jit;
}
template< class ct, int mydim, int cdim, class Traits >
template< bool add, int dim >
inline void MultiLinearGeometry< ct, mydim, cdim, Traits >
::global ( TopologyId topologyId, integral_constant< int, dim >,
CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
const ctype &rf, GlobalCoordinate &y )
{
const ctype xn = df*x[ dim-1 ];
const ctype cxn = ctype( 1 ) - xn;
if( GenericGeometry::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
{
// apply (1-xn) times mapping for bottom
global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf*cxn, y );
// apply xn times mapping for top
global< true >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf*xn, y );
}
else
{
assert( GenericGeometry::isPyramid( toUnsignedInt(topologyId), mydimension, mydimension-dim ) );
// apply (1-xn) times mapping for bottom (with argument x/(1-xn))
if( cxn > Traits::tolerance() || cxn < -Traits::tolerance() )
global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df/cxn, x, rf*cxn, y );
else
global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, ctype( 0 ), y );
// apply xn times the tip
y.axpy( rf*xn, *cit );
++cit;
}
}
template< class ct, int mydim, int cdim, class Traits >
template< bool add >
inline void MultiLinearGeometry< ct, mydim, cdim, Traits >
::global ( TopologyId topologyId, integral_constant< int, 0 >,
CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
const ctype &rf, GlobalCoordinate &y )
{
const GlobalCoordinate &origin = *cit;
++cit;
for( int i = 0; i < coorddimension; ++i )
y[ i ] = (add ? y[ i ] + rf*origin[ i ] : rf*origin[ i ]);
}
template< class ct, int mydim, int cdim, class Traits >
template< bool add, int rows, int dim >
inline void MultiLinearGeometry< ct, mydim, cdim, Traits >
::jacobianTransposed ( TopologyId topologyId, integral_constant< int, dim >,
CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt )
{
assert( rows >= dim );
const ctype xn = df*x[ dim-1 ];
const ctype cxn = ctype( 1 ) - xn;
CornerIterator cit2( cit );
if( GenericGeometry::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
{
// apply (1-xn) times Jacobian for bottom
jacobianTransposed< add >( topologyId, integral_constant< int, dim-1 >(), cit2, df, x, rf*cxn, jt );
// apply xn times Jacobian for top
jacobianTransposed< true >( topologyId, integral_constant< int, dim-1 >(), cit2, df, x, rf*xn, jt );
// compute last row as difference between top value and bottom value
global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, -rf, jt[ dim-1 ] );
global< true >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf, jt[ dim-1 ] );
}
else
{
assert( GenericGeometry::isPyramid( toUnsignedInt(topologyId), mydimension, mydimension-dim ) );
/*
* In the pyramid case, we need a transformation Tb: B -> R^n for the
* base B \subset R^{n-1}. The pyramid transformation is then defined as
* T: P \subset R^n -> R^n
* (x, xn) |-> (1-xn) Tb(x*) + xn t (x \in R^{n-1}, xn \in R)
* with the tip of the pyramid mapped to t and x* = x/(1-xn)
* the projection of (x,xn) onto the base.
*
* For the Jacobi matrix DT we get
* DT = ( A | b )
* with A = DTb(x*) (n x n-1 matrix)
* and b = dT/dxn (n-dim column vector).
* Furthermore
* b = -Tb(x*) + t + \sum_i dTb/dx_i(x^*) x_i/(1-xn)
*
* Note that both A and b are not defined in the pyramid tip (x=0, xn=1)!
* Indeed for B the unit square, Tb mapping B to the quadrilateral given
* by the vertices (0,0,0), (2,0,0), (0,1,0), (1,1,0) and t=(0,0,1), we get
*
* T(x,y,xn) = ( x(2-y/(1-xn)), y, xn )
* / 2-y/(1-xn) -x 0 \
* DT(x,y,xn) = | 0 1 0 |
* \ 0 0 1 /
* which is not continuous for xn -> 1, choose for example
* x=0, y=1-xn, xn -> 1 --> DT -> diag(1,1,1)
* x=1-xn, y=0, xn -> 1 --> DT -> diag(2,1,1)
*
* However, for Tb affine-linear, Tb(y) = My + y0, DTb = M:
* A = M
* b = -M x* - y0 + t + \sum_i M_i x_i/(1-xn)
* = -M x* - y0 + t + M x*
* = -y0 + t
* which is continuous for xn -> 1. Note that this b is also given by
* b = -Tb(0) + t + \sum_i dTb/dx_i(0) x_i/1
* that is replacing x* by 1 and 1-xn by 1 in the formular above.
*
* For xn -> 1, we can thus set x*=0, "1-xn"=1 (or anything != 0) and get
* the right result in case Tb is affine-linear.
*/
/* The second case effectively results in x* = 0 */
ctype dfcxn = (cxn > Traits::tolerance() || cxn < -Traits::tolerance()) ? ctype(df / cxn) : ctype(0);
// initialize last row
// b = -Tb(x*)
// (b = -Tb(0) = -y0 in case xn -> 1 and Tb affine-linear)
global< add >( topologyId, integral_constant< int, dim-1 >(), cit, dfcxn, x, -rf, jt[ dim-1 ] );
// b += t
jt[ dim-1 ].axpy( rf, *cit );
++cit;
// apply Jacobian for bottom (with argument x/(1-xn)) and correct last row
if( add )
{
FieldMatrix< ctype, dim-1, coorddimension > jt2;
// jt2 = dTb/dx_i(x*)
jacobianTransposed< false >( topologyId, integral_constant< int, dim-1 >(), cit2, dfcxn, x, rf, jt2 );
// A = dTb/dx_i(x*) (jt[j], j=0..dim-1)
// b += \sum_i dTb/dx_i(x*) x_i/(1-xn) (jt[dim-1])
// (b += 0 in case xn -> 1)
for( int j = 0; j < dim-1; ++j )
{
jt[ j ] += jt2[ j ];
jt[ dim-1 ].axpy( dfcxn*x[ j ], jt2[ j ] );
}
}
else
{
// jt = dTb/dx_i(x*)
jacobianTransposed< false >( topologyId, integral_constant< int, dim-1 >(), cit2, dfcxn, x, rf, jt );
// b += \sum_i dTb/dx_i(x*) x_i/(1-xn)
for( int j = 0; j < dim-1; ++j )
jt[ dim-1 ].axpy( dfcxn*x[ j ], jt[ j ] );
}
}
}
template< class ct, int mydim, int cdim, class Traits >
template< bool add, int rows >
inline void MultiLinearGeometry< ct, mydim, cdim, Traits >
::jacobianTransposed ( TopologyId topologyId, integral_constant< int, 0 >,
CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt )
{
++cit;
}
template< class ct, int mydim, int cdim, class Traits >
template< int dim >
inline bool MultiLinearGeometry< ct, mydim, cdim, Traits >
::affine ( TopologyId topologyId, integral_constant< int, dim >, CornerIterator &cit, JacobianTransposed &jt )
{
const GlobalCoordinate &orgBottom = *cit;
if( !affine( topologyId, integral_constant< int, dim-1 >(), cit, jt ) )
return false;
const GlobalCoordinate &orgTop = *cit;
if( GenericGeometry::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
{
JacobianTransposed jtTop;
if( !affine( topologyId, integral_constant< int, dim-1 >(), cit, jtTop ) )
return false;
// check whether both jacobians are identical
ctype norm( 0 );
for( int i = 0; i < dim-1; ++i )
norm += (jtTop[ i ] - jt[ i ]).two_norm2();
if( norm >= Traits::tolerance() )
return false;
}
else
++cit;
jt[ dim-1 ] = orgTop - orgBottom;
return true;
}
template< class ct, int mydim, int cdim, class Traits >
inline bool MultiLinearGeometry< ct, mydim, cdim, Traits >
::affine ( TopologyId topologyId, integral_constant< int, 0 >, CornerIterator &cit, JacobianTransposed &jt )
{
++cit;
return true;
}
} // namespace Dune
#endif // #ifndef DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
|