This file is indexed.

/usr/include/dune/geometry/multilineargeometry.hh is in libdune-geometry-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH
#define DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH

#include <cassert>
#include <limits>
#include <vector>

#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/typetraits.hh>

#include <dune/geometry/referenceelements.hh>
#include <dune/geometry/type.hh>
#include <dune/geometry/genericgeometry/geometrytraits.hh>
#include <dune/geometry/genericgeometry/matrixhelper.hh>

namespace Dune
{

  // External Forward Declarations
  // -----------------------------

  template< class ctype, int dim >
  class ReferenceElement;

  template< class ctype, int dim >
  struct ReferenceElements;



  // MultiLinearGeometryTraits
  // -------------------------

  /** \brief default traits class for MultiLinearGeometry
   *
   *  The MultiLinearGeometry (and CachedMultiLinearGeometry) allow tweaking
   *  some implementation details through a traits class.
   *
   *  This structure provides the default values.
   *
   *  \tparam  ct  coordinate type
   */
  template< class ct >
  struct MultiLinearGeometryTraits
  {
    /** \brief helper structure containing some matrix routines
     *
     *  This helper allows exchanging the matrix inversion algorithms.
     *  It must provide the following static methods:
     *  \code
     *  template< int m, int n >
     *  static ctype sqrtDetAAT ( const FieldMatrix< ctype, m, n > &A );
     *
     *  template< int m, int n >
     *  static ctype rightInvA ( const FieldMatrix< ctype, m, n > &A,
     *                           FieldMatrix< ctype, n, m > &ret );
     *
     *  template< int m, int n >
     *  static void xTRightInvA ( const FieldMatrix< ctype, m, n > &A,
     *                            const FieldVector< ctype, n > &x,
     *                            FieldVector< ctype, m > &y );
     *  \endcode
     */
    typedef GenericGeometry::MatrixHelper< GenericGeometry::DuneCoordTraits< ct > > MatrixHelper;

    /** \brief tolerance to numerical algorithms */
    static ct tolerance () { return ct( 16 ) * std::numeric_limits< ct >::epsilon(); }

    /** \brief template specifying the storage for the corners
     *
     *  Internally, the MultiLinearGeometry needs to store the corners of the
     *  geometry.
     *
     *  The corner storage may be chosen depending on geometry dimension and
     *  coordinate dimension. It is required to contain a type named Type, e.g.,
     *  \code
     *  template< int mydim, int cdim >
     *  struct CornerStorage
     *  {
     *    typedef std::vector< FieldVector< ctype, cdim > > Type;
     *  };
     *  \endcode
     *  By default, a std::vector of FieldVector is used.
     *
     *  Apart from being copy constructable and assignable, the corner storage
     *  must provide a constant input iterator, i.e., it must define a type
     *  const_iterator and a pair of constant begin / end methods.
     *
     *  \tparam  mydim  geometry dimension
     *  \tparam  cdim   coordinate dimension
     */
    template< int mydim, int cdim >
    struct CornerStorage
    {
      typedef std::vector< FieldVector< ct, cdim > > Type;
    };

    /** \brief will there be only one geometry type for a dimension?
     *
     *  If there is only a single geometry type for a certain dimension,
     *  <em>hasSingleGeometryType::v</em> can be set to true.
     *  Supporting only one geometry type might yield a gain in performance.
     *
     *  If <em>hasSingleGeometryType::v</em> is set to true, an additional
     *  parameter <em>topologyId</em> is required.
     *  Here's an example:
     *  \code
     *  static const unsigned int topologyId = SimplexTopology< dim >::type::id;
     *  \endcode
     */
    template< int dim >
    struct hasSingleGeometryType
    {
      static const bool v = false;
      static const unsigned int topologyId = ~0u;
    };
  };



  // MultiLinearGeometry
  // -------------------

  /** \brief generic geometry implementation based on corner coordinates
   *
   *  Based on the recursive definition of the reference elements, the
   *  MultiLinearGeometry provides a generic implementation of a geometry given
   *  the corner coordinates.
   *
   *  The geometric mapping is multilinear in the classical sense only in the
   *  case of cubes; for simplices it is linear.
   *  The name is still justified, because the mapping satisfies the important
   *  property of begin linear along edges.
   *
   *  \tparam  ct      coordinate type
   *  \tparam  mydim   geometry dimension
   *  \tparam  cdim    coordinate dimension
   *  \tparam  Traits  traits allowing to tweak some implementation details
   *                   (optional)
   *
   *  The requirements on the traits are documented along with their default,
   *  MultiLinearGeometryTraits.
   */
  template< class ct, int mydim, int cdim, class Traits = MultiLinearGeometryTraits< ct > >
  class MultiLinearGeometry
  {
    typedef MultiLinearGeometry< ct, mydim, cdim, Traits > This;

  public:
    //! coordinate type
    typedef ct ctype;

    //! geometry dimension
    static const int mydimension= mydim;
    //! coordinate dimension
    static const int coorddimension = cdim;

    //! type of local coordinates
    typedef FieldVector< ctype, mydimension > LocalCoordinate;
    //! type of global coordinates
    typedef FieldVector< ctype, coorddimension > GlobalCoordinate;

    //! type of jacobian transposed
    typedef FieldMatrix< ctype, mydimension, coorddimension > JacobianTransposed;

    //! type of jacobian inverse transposed
    class JacobianInverseTransposed;

    //! type of reference element
    typedef Dune::ReferenceElement< ctype, mydimension > ReferenceElement;

  private:
    static const bool hasSingleGeometryType = Traits::template hasSingleGeometryType< mydimension >::v;

  protected:
    typedef typename Traits::MatrixHelper MatrixHelper;
    typedef typename conditional< hasSingleGeometryType, integral_constant< unsigned int, Traits::template hasSingleGeometryType< mydimension >::topologyId >, unsigned int >::type TopologyId;

    typedef Dune::ReferenceElements< ctype, mydimension > ReferenceElements;

  private:
    typedef typename Traits::template CornerStorage< mydimension, coorddimension >::Type::const_iterator CornerIterator;

  public:
    /** \brief constructor
     *
     *  \param[in]  refElement  reference element for the geometry
     *  \param[in]  corners     corners to store internally
     *
     *  \note The type of corners is actually a template argument.
     *        It is only required that the internal corner storage can be
     *        constructed from this object.
     */
    template< class Corners >
    MultiLinearGeometry ( const ReferenceElement &refElement,
                          const Corners &corners )
      : refElement_( &refElement ),
        corners_( corners )
    {}

    /** \brief constructor
     *
     *  \param[in]  gt          geometry type
     *  \param[in]  corners     corners to store internally
     *
     *  \note The type of corners is actually a template argument.
     *        It is only required that the internal corner storage can be
     *        constructed from this object.
     */
    template< class Corners >
    MultiLinearGeometry ( Dune::GeometryType gt,
                          const Corners &corners )
      : refElement_( &ReferenceElements::general( gt ) ),
        corners_( corners )
    {}

    /** \brief is this mapping affine? */
    bool affine () const
    {
      JacobianTransposed jt;
      return affine( jt );
    }

    /** \brief obtain the name of the reference element */
    Dune::GeometryType type () const { return GeometryType( toUnsignedInt(topologyId()), mydimension ); }

    /** \brief obtain number of corners of the corresponding reference element */
    int corners () const { return refElement().size( mydimension ); }

    /** \brief obtain coordinates of the i-th corner */
    GlobalCoordinate corner ( int i ) const
    {
      assert( (i >= 0) && (i < corners()) );
      return corners_[ i ];
    }

    /** \brief obtain the centroid of the mapping's image */
    GlobalCoordinate center () const { return global( refElement().position( 0, 0 ) ); }

    /** \brief evaluate the mapping
     *
     *  \param[in]  local  local coordinate to map
     *
     *  \returns corresponding global coordinate
     */
    GlobalCoordinate global ( const LocalCoordinate &local ) const
    {
      CornerIterator cit = corners_.begin();
      GlobalCoordinate y;
      global< false >( topologyId(), integral_constant< int, mydimension >(), cit, ctype( 1 ), local, ctype( 1 ), y );
      return y;
    }

    /** \brief evaluate the inverse mapping
     *
     *  \param[in]  global  global coordinate to map
     *
     *  \return corresponding local coordinate
     *
     *  \note For given global coordinate y the returned local coordinate x that minimizes
     *  the following function over the local coordinate space spanned by the reference element.
     *  \code
     *  (global( x ) - y).two_norm()
     *  \endcode
     */
    LocalCoordinate local ( const GlobalCoordinate &global ) const
    {
      const ctype tolerance = Traits::tolerance();
      LocalCoordinate x = refElement().position( 0, 0 );
      LocalCoordinate dx;
      do
      {
        // Newton's method: DF^n dx^n = F^n, x^{n+1} -= dx^n
        const GlobalCoordinate dglobal = (*this).global( x ) - global;
        MatrixHelper::template xTRightInvA< mydimension, coorddimension >( jacobianTransposed( x ), dglobal, dx );
        x -= dx;
      } while( dx.two_norm2() > tolerance );
      return x;
    }

    /** \brief obtain the integration element
     *
     *  If the Jacobian of the mapping is denoted by $J(x)$, the integration
     *  integration element \f$\mu(x)\f$ is given by
     *  \f[ \mu(x) = \sqrt{|\det (J^T(x) J(x))|}.\f]
     *
     *  \param[in]  local  local coordinate to evaluate the integration element in
     *
     *  \returns the integration element \f$\mu(x)\f$.
     *
     *  \note For affine mappings, it is more efficient to call
     *        jacobianInverseTransposed before integrationElement, if both
     *        are required.
     */
    ctype integrationElement ( const LocalCoordinate &local ) const
    {
      return MatrixHelper::template sqrtDetAAT< mydimension, coorddimension >( jacobianTransposed( local ) );
    }

    /** \brief obtain the volume of the mapping's image
     *
     *  \note The current implementation just returns
     *  \code
     *  integrationElement( refElement().position( 0, 0 ) ) * refElement().volume()
     *  \endcode
     *  which is wrong for n-linear surface maps and other nonlinear maps.
     */
    ctype volume () const
    {
      return integrationElement( refElement().position( 0, 0 ) ) * refElement().volume();
    }

    /** \brief obtain the transposed of the Jacobian
     *
     *  \param[in]  local  local coordinate to evaluate Jacobian in
     *
     *  \returns a reference to the transposed of the Jacobian
     *
     *  \note The returned reference is reused on the next call to
     *        JacobianTransposed, destroying the previous value.
     */
    JacobianTransposed jacobianTransposed ( const LocalCoordinate &local ) const
    {
      JacobianTransposed jt;
      CornerIterator cit = corners_.begin();
      jacobianTransposed< false >( topologyId(), integral_constant< int, mydimension >(), cit, ctype( 1 ), local, ctype( 1 ), jt );
      return jt;
    }

    /** \brief obtain the transposed of the Jacobian's inverse
     *
     *  The Jacobian's inverse is defined as a pseudo-inverse. If we denote
     *  the Jacobian by \f$J(x)\f$, the following condition holds:
     *  \f[J^{-1}(x) J(x) = I.\f]
     */
    JacobianInverseTransposed jacobianInverseTransposed ( const LocalCoordinate &local ) const;

  protected:
    const ReferenceElement &refElement () const { return *refElement_; }

    TopologyId topologyId () const
    {
      return topologyId( integral_constant< bool, hasSingleGeometryType >() );
    }

    template< bool add, int dim >
    static void global ( TopologyId topologyId, integral_constant< int, dim >,
                         CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
                         const ctype &rf, GlobalCoordinate &y );
    template< bool add >
    static void global ( TopologyId topologyId, integral_constant< int, 0 >,
                         CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
                         const ctype &rf, GlobalCoordinate &y );

    template< bool add, int rows, int dim >
    static void jacobianTransposed ( TopologyId topologyId, integral_constant< int, dim >,
                                     CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
                                     const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt );
    template< bool add, int rows >
    static void jacobianTransposed ( TopologyId topologyId, integral_constant< int, 0 >,
                                     CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
                                     const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt );

    template< int dim >
    static bool affine ( TopologyId topologyId, integral_constant< int, dim >, CornerIterator &cit, JacobianTransposed &jt );
    static bool affine ( TopologyId topologyId, integral_constant< int, 0 >, CornerIterator &cit, JacobianTransposed &jt );

    bool affine ( JacobianTransposed &jacobianTransposed ) const
    {
      CornerIterator cit = corners_.begin();
      return affine( topologyId(), integral_constant< int, mydimension >(), cit, jacobianTransposed );
    }

  private:
    // The following methods are needed to convert the return type of topologyId to
    // unsigned int with g++-4.4. It has problems casting integral_constant to the
    // integral type.
    static unsigned int toUnsignedInt(unsigned int i) { return i; }
    template<unsigned int v>
    static unsigned int toUnsignedInt(std::integral_constant<unsigned int,v> i) { return v; }
    TopologyId topologyId ( integral_constant< bool, true > ) const { return TopologyId(); }
    unsigned int topologyId ( integral_constant< bool, false > ) const { return refElement().type().id(); }

    const ReferenceElement *refElement_;
    typename Traits::template CornerStorage< mydimension, coorddimension >::Type corners_;
  };



  // MultiLinearGeometry::JacobianInverseTransposed
  // ----------------------------------------------

  template< class ct, int mydim, int cdim, class Traits >
  class MultiLinearGeometry< ct, mydim, cdim, Traits >::JacobianInverseTransposed
    : public FieldMatrix< ctype, coorddimension, mydimension >
  {
    typedef FieldMatrix< ctype, coorddimension, mydimension > Base;

  public:
    void setup ( const JacobianTransposed &jt )
    {
      detInv_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jt, static_cast< Base & >( *this ) );
    }

    void setupDeterminant ( const JacobianTransposed &jt )
    {
      detInv_ = MatrixHelper::template sqrtDetAAT< mydimension, coorddimension >( jt );
    }

    ctype det () const { return ctype( 1 ) / detInv_; }
    ctype detInv () const { return detInv_; }

  private:
    ctype detInv_;
  };



  /** \brief Implement a MultiLinearGeometry with additional caching
   *
   * This class implements the same interface and functionality as MultiLinearGeometry.
   * However, it additionally implements caching for various results.
   *
   *  \tparam  ct      coordinate type
   *  \tparam  mydim   geometry dimension
   *  \tparam  cdim    coordinate dimension
   *  \tparam  Traits  traits allowing to tweak some implementation details
   *                   (optional)
   *
   */
  template< class ct, int mydim, int cdim, class Traits = MultiLinearGeometryTraits< ct > >
  class CachedMultiLinearGeometry
    : public MultiLinearGeometry< ct, mydim, cdim, Traits >
  {
    typedef CachedMultiLinearGeometry< ct, mydim, cdim, Traits > This;
    typedef MultiLinearGeometry< ct, mydim, cdim, Traits > Base;

  protected:
    typedef typename Base::MatrixHelper MatrixHelper;

  public:
    typedef typename Base::ReferenceElement ReferenceElement;

    typedef typename Base::ctype ctype;

    using Base::mydimension;
    using Base::coorddimension;

    typedef typename Base::LocalCoordinate LocalCoordinate;
    typedef typename Base::GlobalCoordinate GlobalCoordinate;

    typedef typename Base::JacobianTransposed JacobianTransposed;
    typedef typename Base::JacobianInverseTransposed JacobianInverseTransposed;

    template< class CornerStorage >
    CachedMultiLinearGeometry ( const ReferenceElement &refElement, const CornerStorage &cornerStorage )
      : Base( refElement, cornerStorage ),
        affine_( Base::affine( jacobianTransposed_ ) ),
        jacobianInverseTransposedComputed_( false ),
        integrationElementComputed_( false )
    {}

    template< class CornerStorage >
    CachedMultiLinearGeometry ( Dune::GeometryType gt, const CornerStorage &cornerStorage )
      : Base( gt, cornerStorage ),
        affine_( Base::affine( jacobianTransposed_ ) ),
        jacobianInverseTransposedComputed_( false ),
        integrationElementComputed_( false )
    {}

    /** \brief is this mapping affine? */
    bool affine () const { return affine_; }

    using Base::corner;

    /** \brief obtain the centroid of the mapping's image */
    GlobalCoordinate center () const { return global( refElement().position( 0, 0 ) ); }

    /** \brief evaluate the mapping
     *
     *  \param[in]  local  local coordinate to map
     *
     *  \returns corresponding global coordinate
     */
    GlobalCoordinate global ( const LocalCoordinate &local ) const
    {
      if( affine() )
      {
        GlobalCoordinate global( corner( 0 ) );
        jacobianTransposed_.umtv( local, global );
        return global;
      }
      else
        return Base::global( local );
    }

    /** \brief evaluate the inverse mapping
     *
     *  \param[in]  global  global coordinate to map
     *
     *  \return corresponding local coordinate
     *
     *  \note For given global coordinate y the returned local coordinate x that minimizes
     *  the following function over the local coordinate space spanned by the reference element.
     *  \code
     *  (global( x ) - y).two_norm()
     *  \endcode
     */
    LocalCoordinate local ( const GlobalCoordinate &global ) const
    {
      if( affine() )
      {
        LocalCoordinate local;
        if( jacobianInverseTransposedComputed_ )
          jacobianInverseTransposed_.mtv( global - corner( 0 ), local );
        else
          MatrixHelper::template xTRightInvA< mydimension, coorddimension >( jacobianTransposed_, global - corner( 0 ), local );
        return local;
      }
      else
        return Base::local( global );
    }

    /** \brief obtain the integration element
     *
     *  If the Jacobian of the mapping is denoted by $J(x)$, the integration
     *  integration element \f$\mu(x)\f$ is given by
     *  \f[ \mu(x) = \sqrt{|\det (J^T(x) J(x))|}.\f]
     *
     *  \param[in]  local  local coordinate to evaluate the integration element in
     *
     *  \returns the integration element \f$\mu(x)\f$.
     *
     *  \note For affine mappings, it is more efficient to call
     *        jacobianInverseTransposed before integrationElement, if both
     *        are required.
     */
    ctype integrationElement ( const LocalCoordinate &local ) const
    {
      if( affine() )
      {
        if( !integrationElementComputed_ )
        {
          jacobianInverseTransposed_.setupDeterminant( jacobianTransposed_ );
          integrationElementComputed_ = true;
        }
        return jacobianInverseTransposed_.detInv();
      }
      else
        return Base::integrationElement( local );
    }

    /** \brief obtain the volume of the mapping's image */
    ctype volume () const
    {
      if( affine() )
        return integrationElement( refElement().position( 0, 0 ) ) * refElement().volume();
      else
        return Base::volume();
    }

    /** \brief obtain the transposed of the Jacobian
     *
     *  \param[in]  local  local coordinate to evaluate Jacobian in
     *
     *  \returns a reference to the transposed of the Jacobian
     *
     *  \note The returned reference is reused on the next call to
     *        JacobianTransposed, destroying the previous value.
     */
    JacobianTransposed jacobianTransposed ( const LocalCoordinate &local ) const
    {
      if( affine() )
        return jacobianTransposed_;
      else
        return Base::jacobianTransposed( local );
    }

    /** \brief obtain the transposed of the Jacobian's inverse
     *
     *  The Jacobian's inverse is defined as a pseudo-inverse. If we denote
     *  the Jacobian by \f$J(x)\f$, the following condition holds:
     *  \f[J^{-1}(x) J(x) = I.\f]
     */
    JacobianInverseTransposed jacobianInverseTransposed ( const LocalCoordinate &local ) const
    {
      if( affine() )
      {
        if( !jacobianInverseTransposedComputed_ )
        {
          jacobianInverseTransposed_.setup( jacobianTransposed_ );
          jacobianInverseTransposedComputed_ = true;
          integrationElementComputed_ = true;
        }
        return jacobianInverseTransposed_;
      }
      else
        return Base::jacobianInverseTransposed( local );
    }

  protected:
    using Base::refElement;

  private:
    mutable JacobianTransposed jacobianTransposed_;
    mutable JacobianInverseTransposed jacobianInverseTransposed_;

    mutable bool affine_ : 1;

    mutable bool jacobianInverseTransposedComputed_ : 1;
    mutable bool integrationElementComputed_ : 1;
  };



  // Implementation of MultiLinearGeometry
  // -------------------------------------

  template< class ct, int mydim, int cdim, class Traits >
  inline typename MultiLinearGeometry< ct, mydim, cdim, Traits >::JacobianInverseTransposed
  MultiLinearGeometry< ct, mydim, cdim, Traits >::jacobianInverseTransposed ( const LocalCoordinate &local ) const
  {
    JacobianInverseTransposed jit;
    jit.setup( jacobianTransposed( local ) );
    return jit;
  }


  template< class ct, int mydim, int cdim, class Traits >
  template< bool add, int dim >
  inline void MultiLinearGeometry< ct, mydim, cdim, Traits >
  ::global ( TopologyId topologyId, integral_constant< int, dim >,
             CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
             const ctype &rf, GlobalCoordinate &y )
  {
    const ctype xn = df*x[ dim-1 ];
    const ctype cxn = ctype( 1 ) - xn;

    if( GenericGeometry::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
    {
      // apply (1-xn) times mapping for bottom
      global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf*cxn, y );
      // apply xn times mapping for top
      global< true >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf*xn, y );
    }
    else
    {
      assert( GenericGeometry::isPyramid( toUnsignedInt(topologyId), mydimension, mydimension-dim ) );
      // apply (1-xn) times mapping for bottom (with argument x/(1-xn))
      if( cxn > Traits::tolerance() || cxn < -Traits::tolerance() )
        global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df/cxn, x, rf*cxn, y );
      else
        global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, ctype( 0 ), y );
      // apply xn times the tip
      y.axpy( rf*xn, *cit );
      ++cit;
    }
  }

  template< class ct, int mydim, int cdim, class Traits >
  template< bool add >
  inline void MultiLinearGeometry< ct, mydim, cdim, Traits >
  ::global ( TopologyId topologyId, integral_constant< int, 0 >,
             CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
             const ctype &rf, GlobalCoordinate &y )
  {
    const GlobalCoordinate &origin = *cit;
    ++cit;
    for( int i = 0; i < coorddimension; ++i )
      y[ i ] = (add ? y[ i ] + rf*origin[ i ] : rf*origin[ i ]);
  }


  template< class ct, int mydim, int cdim, class Traits >
  template< bool add, int rows, int dim >
  inline void MultiLinearGeometry< ct, mydim, cdim, Traits >
  ::jacobianTransposed ( TopologyId topologyId, integral_constant< int, dim >,
                         CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
                         const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt )
  {
    assert( rows >= dim );

    const ctype xn = df*x[ dim-1 ];
    const ctype cxn = ctype( 1 ) - xn;

    CornerIterator cit2( cit );
    if( GenericGeometry::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
    {
      // apply (1-xn) times Jacobian for bottom
      jacobianTransposed< add >( topologyId, integral_constant< int, dim-1 >(), cit2, df, x, rf*cxn, jt );
      // apply xn times Jacobian for top
      jacobianTransposed< true >( topologyId, integral_constant< int, dim-1 >(), cit2, df, x, rf*xn, jt );
      // compute last row as difference between top value and bottom value
      global< add >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, -rf, jt[ dim-1 ] );
      global< true >( topologyId, integral_constant< int, dim-1 >(), cit, df, x, rf, jt[ dim-1 ] );
    }
    else
    {
      assert( GenericGeometry::isPyramid( toUnsignedInt(topologyId), mydimension, mydimension-dim ) );
      /*
       * In the pyramid case, we need a transformation Tb: B -> R^n for the
       * base B \subset R^{n-1}. The pyramid transformation is then defined as
       *   T: P \subset R^n  -> R^n
       *      (x, xn)        |-> (1-xn) Tb(x*) + xn t  (x \in R^{n-1}, xn \in R)
       * with the tip of the pyramid mapped to t and x* = x/(1-xn)
       * the projection of (x,xn) onto the base.
       *
       * For the Jacobi matrix DT we get
       *   DT = ( A | b )
       * with A = DTb(x*)   (n x n-1 matrix)
       *  and b = dT/dxn    (n-dim column vector).
       * Furthermore
       *   b = -Tb(x*) + t + \sum_i dTb/dx_i(x^*) x_i/(1-xn)
       *
       * Note that both A and b are not defined in the pyramid tip (x=0, xn=1)!
       * Indeed for B the unit square, Tb mapping B to the quadrilateral given
       * by the vertices (0,0,0), (2,0,0), (0,1,0), (1,1,0) and t=(0,0,1), we get
       *
       *   T(x,y,xn) = ( x(2-y/(1-xn)), y, xn )
       *               / 2-y/(1-xn)  -x   0 \
       *  DT(x,y,xn) = |    0         1   0 |
       *               \    0         0   1 /
       * which is not continuous for xn -> 1, choose for example
       *   x=0,    y=1-xn, xn -> 1   --> DT -> diag(1,1,1)
       *   x=1-xn, y=0,    xn -> 1   --> DT -> diag(2,1,1)
       *
       * However, for Tb affine-linear, Tb(y) = My + y0, DTb = M:
       *   A = M
       *   b = -M x* - y0 + t + \sum_i M_i x_i/(1-xn)
       *     = -M x* - y0 + t + M x*
       *     = -y0 + t
       * which is continuous for xn -> 1. Note that this b is also given by
       *   b = -Tb(0) + t + \sum_i dTb/dx_i(0) x_i/1
       * that is replacing x* by 1 and 1-xn by 1 in the formular above.
       *
       * For xn -> 1, we can thus set x*=0, "1-xn"=1 (or anything != 0) and get
       * the right result in case Tb is affine-linear.
       */

      /* The second case effectively results in x* = 0 */
      ctype dfcxn = (cxn > Traits::tolerance() || cxn < -Traits::tolerance()) ? ctype(df / cxn) : ctype(0);

      // initialize last row
      // b =  -Tb(x*)
      // (b = -Tb(0) = -y0 in case xn -> 1 and Tb affine-linear)
      global< add >( topologyId, integral_constant< int, dim-1 >(), cit, dfcxn, x, -rf, jt[ dim-1 ] );
      // b += t
      jt[ dim-1 ].axpy( rf, *cit );
      ++cit;
      // apply Jacobian for bottom (with argument x/(1-xn)) and correct last row
      if( add )
      {
        FieldMatrix< ctype, dim-1, coorddimension > jt2;
        // jt2 = dTb/dx_i(x*)
        jacobianTransposed< false >( topologyId, integral_constant< int, dim-1 >(), cit2, dfcxn, x, rf, jt2 );
        // A = dTb/dx_i(x*)                      (jt[j], j=0..dim-1)
        // b += \sum_i dTb/dx_i(x*) x_i/(1-xn)   (jt[dim-1])
        // (b += 0 in case xn -> 1)
        for( int j = 0; j < dim-1; ++j )
        {
          jt[ j ] += jt2[ j ];
          jt[ dim-1 ].axpy( dfcxn*x[ j ], jt2[ j ] );
        }
      }
      else
      {
        // jt = dTb/dx_i(x*)
        jacobianTransposed< false >( topologyId, integral_constant< int, dim-1 >(), cit2, dfcxn, x, rf, jt );
        // b += \sum_i dTb/dx_i(x*) x_i/(1-xn)
        for( int j = 0; j < dim-1; ++j )
          jt[ dim-1 ].axpy( dfcxn*x[ j ], jt[ j ] );
      }
    }
  }

  template< class ct, int mydim, int cdim, class Traits >
  template< bool add, int rows >
  inline void MultiLinearGeometry< ct, mydim, cdim, Traits >
  ::jacobianTransposed ( TopologyId topologyId, integral_constant< int, 0 >,
                         CornerIterator &cit, const ctype &df, const LocalCoordinate &x,
                         const ctype &rf, FieldMatrix< ctype, rows, cdim > &jt )
  {
    ++cit;
  }



  template< class ct, int mydim, int cdim, class Traits >
  template< int dim >
  inline bool MultiLinearGeometry< ct, mydim, cdim, Traits >
  ::affine ( TopologyId topologyId, integral_constant< int, dim >, CornerIterator &cit, JacobianTransposed &jt )
  {
    const GlobalCoordinate &orgBottom = *cit;
    if( !affine( topologyId, integral_constant< int, dim-1 >(), cit, jt ) )
      return false;
    const GlobalCoordinate &orgTop = *cit;

    if( GenericGeometry::isPrism( toUnsignedInt(topologyId), mydimension, mydimension-dim ) )
    {
      JacobianTransposed jtTop;
      if( !affine( topologyId, integral_constant< int, dim-1 >(), cit, jtTop ) )
        return false;

      // check whether both jacobians are identical
      ctype norm( 0 );
      for( int i = 0; i < dim-1; ++i )
        norm += (jtTop[ i ] - jt[ i ]).two_norm2();
      if( norm >= Traits::tolerance() )
        return false;
    }
    else
      ++cit;
    jt[ dim-1 ] = orgTop - orgBottom;
    return true;
  }

  template< class ct, int mydim, int cdim, class Traits >
  inline bool MultiLinearGeometry< ct, mydim, cdim, Traits >
  ::affine ( TopologyId topologyId, integral_constant< int, 0 >, CornerIterator &cit, JacobianTransposed &jt )
  {
    ++cit;
    return true;
  }

} // namespace Dune

#endif // #ifndef DUNE_GEOMETRY_MULTILINEARGEOMETRY_HH