/usr/include/dune/geometry/axisalignedcubegeometry.hh is in libdune-geometry-dev 2.4.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GEOMETRY_AXISALIGNED_CUBE_GEOMETRY_HH
#define DUNE_GEOMETRY_AXISALIGNED_CUBE_GEOMETRY_HH
/** \file
\brief A geometry implementation for axis-aligned hypercubes
*/
#include <bitset>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/diagonalmatrix.hh>
#include <dune/common/unused.hh>
#include <dune/geometry/type.hh>
namespace Dune {
/** \brief A geometry implementation for axis-aligned hypercubes
*
* This code is much faster than a generic implementation for hexahedral elements.
* All methods use the fact that a geometry for axis-aligned cubes is basically just
* a(n affine) scaling in the coordinate directions.
*
* If dim < coorddim then local coordinates need to be suitably mapped to global ones.
* AxisAlignedCubeGeometry uses a special std::bitset 'axes' for this. 'axes' has coorddim
* entries, of which precisely 'dim' need to be set. Each set entry marks a local
* coordinate, i.e., a coordinate in which the cube has extension. The cube is flat
* in all other directions. Its coordinates in these directions is taking from
* the array called 'lower', which specifies the lower left corner of the hypercube.
*
* In the case of dim==coorddim, the code goes into overdrive. Then special code path's
* are taken (statically) which omit the conditionals needed to sort out the embedding
* of local into global coordinates. Aggressive compiler/scheduler optimization becomes
* possible. Additionally, the types returned by the methods jacobianTransposed
* and jacobianInverseTransposed are dedicated types for diagonal matrices (DiagonalMatrix).
*
* \tparam CoordType Type used for single coordinate coefficients
* \tparam dim Dimension of the cube
* \tparam coorddim Dimension of the space that the cube lives in
*/
template <class CoordType, unsigned int dim, unsigned int coorddim>
class AxisAlignedCubeGeometry
{
public:
/** \brief Dimension of the cube element */
enum {mydimension = dim};
/** \brief Dimension of the world space that the cube element is embedded in*/
enum {coorddimension = coorddim};
/** \brief Type used for single coordinate coefficients */
typedef CoordType ctype;
/** \brief Type used for a vector of element coordinates */
typedef FieldVector<ctype,dim> LocalCoordinate;
/** \brief Type used for a vector of world coordinates */
typedef FieldVector<ctype,coorddim> GlobalCoordinate;
/** \brief Return type of jacobianTransposed
This is a fast DiagonalMatrix if dim==coorddim, and a FieldMatrix otherwise.
The FieldMatrix will never contain more than one entry per row,
hence it could be replaced by something more efficient.
*/
typedef typename conditional<dim==coorddim,
DiagonalMatrix<ctype,dim>,
FieldMatrix<ctype,dim,coorddim> >::type JacobianTransposed;
/** \brief Return type of jacobianInverseTransposed
This is a fast DiagonalMatrix if dim==coorddim, and a FieldMatrix otherwise.
The FieldMatrix will never contain more than one entry per column,
hence it could be replaced by something more efficient.
*/
typedef typename conditional<dim==coorddim,
DiagonalMatrix<ctype,dim>,
FieldMatrix<ctype,coorddim,dim> >::type JacobianInverseTransposed;
/** \brief Constructor from a lower left and an upper right corner
\note Only for dim==coorddim
*/
AxisAlignedCubeGeometry(const Dune::FieldVector<ctype,coorddim> lower,
const Dune::FieldVector<ctype,coorddim> upper)
: lower_(lower),
upper_(upper),
axes_()
{
// all 'true', but is never actually used
axes_ = (1<<coorddim)-1;
}
/** \brief Constructor from a lower left and an upper right corner
*
* \param lower Coordinates for the lower left corner.
* \param upper Coordinates for the upper right corner.
* \param axes Each bit set to 'true' here corresponds to a local coordinate axis.
* In other words, precisely 'dim' bits must be set here.
*/
AxisAlignedCubeGeometry(const Dune::FieldVector<ctype,coorddim> lower,
const Dune::FieldVector<ctype,coorddim> upper,
const std::bitset<coorddim>& axes)
: lower_(lower),
upper_(upper),
axes_(axes)
{
assert(axes.count()==dim);
for (size_t i=0; i<coorddim; i++)
if (not axes_[i])
upper_[i] = lower_[i];
}
/** \brief Constructor from a single point only
\note Only for dim==0
*/
AxisAlignedCubeGeometry(const Dune::FieldVector<ctype,coorddim> lower)
: lower_(lower)
{}
/** \brief Assignment operator */
AxisAlignedCubeGeometry& operator=(const AxisAlignedCubeGeometry& other)
{
lower_ = other.lower_;
upper_ = other.upper_;
axes_ = other.axes_;
return *this;
}
/** \brief Type of the cube. Here: a hypercube of the correct dimension */
GeometryType type() const
{
return GeometryType(GeometryType::cube,dim);
}
/** \brief Map a point in local (element) coordinates to world coordinates */
GlobalCoordinate global(const LocalCoordinate& local) const
{
GlobalCoordinate result;
if (dim == coorddim) { // fast case
for (size_t i=0; i<coorddim; i++)
result[i] = lower_[i] + local[i]*(upper_[i] - lower_[i]);
} if (dim == 0) { // a vertex -- the other fast case
result = lower_; // hope for named-return-type-optimization
} else { // slow case
size_t lc=0;
for (size_t i=0; i<coorddim; i++)
result[i] = (axes_[i])
? lower_[i] + local[lc++]*(upper_[i] - lower_[i])
: lower_[i];
}
return result;
}
/** \brief Map a point in global (world) coordinates to element coordinates */
LocalCoordinate local(const GlobalCoordinate& global) const
{
LocalCoordinate result;
if (dim == coorddim) { // fast case
for (size_t i=0; i<dim; i++)
result[i] = (global[i] - lower_[i]) / (upper_[i] - lower_[i]);
} else if (dim != 0) { // slow case
size_t lc=0;
for (size_t i=0; i<coorddim; i++)
if (axes_[i])
result[lc++] = (global[i] - lower_[i]) / (upper_[i] - lower_[i]);
}
return result;
}
/** \brief Jacobian transposed of the transformation from local to global coordinates */
JacobianTransposed jacobianTransposed(DUNE_UNUSED const LocalCoordinate& local) const
{
JacobianTransposed result;
// Actually compute the result. Computes different methods depending
// on what kind of matrix JacobianTransposed is.
jacobianTransposed(result);
return result;
}
/** \brief Jacobian transposed of the transformation from local to global coordinates */
JacobianInverseTransposed jacobianInverseTransposed(DUNE_UNUSED const LocalCoordinate& local) const
{
JacobianInverseTransposed result;
// Actually compute the result. Computes different methods depending
// on what kind of matrix JacobianTransposed is.
jacobianInverseTransposed(result);
return result;
}
/** \brief Return the integration element, i.e., the determinant term in the integral
transformation formula
*/
ctype integrationElement(DUNE_UNUSED const LocalCoordinate& local) const
{
return volume();
}
/** \brief Return center of mass of the element */
GlobalCoordinate center() const
{
GlobalCoordinate result;
if (dim==0)
result = lower_;
else {
// Since lower_==upper_ for unused coordinates, this always does the right thing
for (size_t i=0; i<coorddim; i++)
result[i] = 0.5 * (lower_[i] + upper_[i]);
}
return result;
}
/** \brief Return the number of corners of the element */
int corners() const
{
return 1<<dim;
}
/** \brief Return world coordinates of the k-th corner of the element */
GlobalCoordinate corner(int k) const
{
GlobalCoordinate result;
if (dim == coorddim) { // fast case
for (size_t i=0; i<coorddim; i++)
result[i] = (k & (1<<i)) ? upper_[i] : lower_[i];
} if (dim == 0) { // vertex
result = lower_; // rely on named return-type optimization
} else { // slow case
unsigned int mask = 1;
for (size_t i=0; i<coorddim; i++) {
if (not axes_[i])
result[i] = lower_[i];
else {
result[i] = (k & mask) ? upper_[i] : lower_[i];
mask = (mask<<1);
}
}
}
return result;
}
/** \brief Return the element volume */
ctype volume() const
{
ctype vol = 1;
if (dim == coorddim) { // fast case
for (size_t i=0; i<dim; i++)
vol *= upper_[i] - lower_[i];
// do nothing if dim == 0
} else if (dim != 0) { // slow case
for (size_t i=0; i<coorddim; i++)
if (axes_[i])
vol *= upper_[i] - lower_[i];
}
return vol;
}
/** \brief Return if the element is affine. Here: yes */
bool affine() const
{
return true;
}
private:
// jacobianTransposed: fast case --> diagonal matrix
void jacobianTransposed ( DiagonalMatrix<ctype,dim> &jacobianTransposed ) const
{
for (size_t i=0; i<dim; i++)
jacobianTransposed.diagonal()[i] = upper_[i] - lower_[i];
}
// jacobianTransposed: slow case --> dense matrix
void jacobianTransposed ( FieldMatrix<ctype,dim,coorddim> &jacobianTransposed ) const
{
if (dim==0)
return;
size_t lc = 0;
for (size_t i=0; i<coorddim; i++)
if (axes_[i])
jacobianTransposed[lc++][i] = upper_[i] - lower_[i];
}
// jacobianInverseTransposed: fast case --> diagonal matrix
void jacobianInverseTransposed ( DiagonalMatrix<ctype,dim> &jacobianInverseTransposed ) const
{
for (size_t i=0; i<dim; i++)
jacobianInverseTransposed.diagonal()[i] = 1.0 / (upper_[i] - lower_[i]);
}
// jacobianInverseTransposed: slow case --> dense matrix
void jacobianInverseTransposed ( FieldMatrix<ctype,coorddim,dim> &jacobianInverseTransposed ) const
{
if (dim==0)
return;
size_t lc = 0;
for (size_t i=0; i<coorddim; i++)
if (axes_[i])
jacobianInverseTransposed[i][lc++] = 1.0 / (upper_[i] - lower_[i]);
}
Dune::FieldVector<ctype,coorddim> lower_;
Dune::FieldVector<ctype,coorddim> upper_;
std::bitset<coorddim> axes_;
};
} // namespace Dune
#endif
|