This file is indexed.

/usr/include/dune/geometry/axisalignedcubegeometry.hh is in libdune-geometry-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_GEOMETRY_AXISALIGNED_CUBE_GEOMETRY_HH
#define DUNE_GEOMETRY_AXISALIGNED_CUBE_GEOMETRY_HH

/** \file
    \brief A geometry implementation for axis-aligned hypercubes
 */

#include <bitset>

#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/diagonalmatrix.hh>
#include <dune/common/unused.hh>

#include <dune/geometry/type.hh>




namespace Dune {

  /** \brief A geometry implementation for axis-aligned hypercubes
   *
   * This code is much faster than a generic implementation for hexahedral elements.
   * All methods use the fact that a geometry for axis-aligned cubes is basically just
   * a(n affine) scaling in the coordinate directions.
   *
   * If dim < coorddim then local coordinates need to be suitably mapped to global ones.
   * AxisAlignedCubeGeometry uses a special std::bitset 'axes' for this.  'axes' has coorddim
   * entries, of which precisely 'dim' need to be set.  Each set entry marks a local
   * coordinate, i.e., a coordinate in which the cube has extension.  The cube is flat
   * in all other directions.  Its coordinates in these directions is taking from
   * the array called 'lower', which specifies the lower left corner of the hypercube.
   *
   * In the case of dim==coorddim, the code goes into overdrive.  Then special code path's
   * are taken (statically) which omit the conditionals needed to sort out the embedding
   * of local into global coordinates.  Aggressive compiler/scheduler optimization becomes
   * possible.  Additionally, the types returned by the methods jacobianTransposed
   * and jacobianInverseTransposed are dedicated types for diagonal matrices (DiagonalMatrix).
   *
   * \tparam CoordType Type used for single coordinate coefficients
   * \tparam dim Dimension of the cube
   * \tparam coorddim Dimension of the space that the cube lives in
   */
  template <class CoordType, unsigned int dim, unsigned int coorddim>
  class AxisAlignedCubeGeometry
  {


  public:

    /** \brief Dimension of the cube element */
    enum {mydimension = dim};

    /** \brief Dimension of the world space that the cube element is embedded in*/
    enum {coorddimension = coorddim};

    /** \brief Type used for single coordinate coefficients */
    typedef CoordType ctype;

    /** \brief Type used for a vector of element coordinates */
    typedef FieldVector<ctype,dim> LocalCoordinate;

    /** \brief Type used for a vector of world coordinates */
    typedef FieldVector<ctype,coorddim> GlobalCoordinate;

    /** \brief Return type of jacobianTransposed

        This is a fast DiagonalMatrix if dim==coorddim, and a FieldMatrix otherwise.
        The FieldMatrix will never contain more than one entry per row,
        hence it could be replaced by something more efficient.
     */
    typedef typename conditional<dim==coorddim,
        DiagonalMatrix<ctype,dim>,
        FieldMatrix<ctype,dim,coorddim> >::type JacobianTransposed;

    /** \brief Return type of jacobianInverseTransposed

        This is a fast DiagonalMatrix if dim==coorddim, and a FieldMatrix otherwise.
        The FieldMatrix will never contain more than one entry per column,
        hence it could be replaced by something more efficient.
     */
    typedef typename conditional<dim==coorddim,
        DiagonalMatrix<ctype,dim>,
        FieldMatrix<ctype,coorddim,dim> >::type JacobianInverseTransposed;

    /** \brief Constructor from a lower left and an upper right corner

        \note Only for dim==coorddim
     */
    AxisAlignedCubeGeometry(const Dune::FieldVector<ctype,coorddim> lower,
                            const Dune::FieldVector<ctype,coorddim> upper)
      : lower_(lower),
        upper_(upper),
        axes_()
    {
      // all 'true', but is never actually used
      axes_ = (1<<coorddim)-1;
    }

    /** \brief Constructor from a lower left and an upper right corner
     *
     *  \param lower Coordinates for the lower left corner.
     *  \param upper Coordinates for the upper right corner.
     *  \param axes Each bit set to 'true' here corresponds to a local coordinate axis.
     *         In other words, precisely 'dim' bits must be set here.
     */
    AxisAlignedCubeGeometry(const Dune::FieldVector<ctype,coorddim> lower,
                            const Dune::FieldVector<ctype,coorddim> upper,
                            const std::bitset<coorddim>& axes)
      : lower_(lower),
        upper_(upper),
        axes_(axes)
    {
      assert(axes.count()==dim);
      for (size_t i=0; i<coorddim; i++)
        if (not axes_[i])
          upper_[i] = lower_[i];
    }

    /** \brief Constructor from a single point only

        \note Only for dim==0
     */
    AxisAlignedCubeGeometry(const Dune::FieldVector<ctype,coorddim> lower)
      : lower_(lower)
    {}

    /** \brief Assignment operator */
    AxisAlignedCubeGeometry& operator=(const AxisAlignedCubeGeometry& other)
    {
      lower_                     = other.lower_;
      upper_                     = other.upper_;
      axes_                      = other.axes_;
      return *this;
    }

    /** \brief Type of the cube.  Here: a hypercube of the correct dimension */
    GeometryType type() const
    {
      return GeometryType(GeometryType::cube,dim);
    }

    /** \brief Map a point in local (element) coordinates to world coordinates */
    GlobalCoordinate global(const LocalCoordinate& local) const
    {
      GlobalCoordinate result;
      if (dim == coorddim) {        // fast case
        for (size_t i=0; i<coorddim; i++)
          result[i] = lower_[i] + local[i]*(upper_[i] - lower_[i]);
      } if (dim == 0) {              // a vertex -- the other fast case
        result = lower_;          // hope for named-return-type-optimization
      } else {          // slow case
        size_t lc=0;
        for (size_t i=0; i<coorddim; i++)
          result[i] = (axes_[i])
                      ? lower_[i] + local[lc++]*(upper_[i] - lower_[i])
                      : lower_[i];
      }
      return result;
    }

    /** \brief Map a point in global (world) coordinates to element coordinates */
    LocalCoordinate local(const GlobalCoordinate& global) const
    {
      LocalCoordinate result;
      if (dim == coorddim) {        // fast case
        for (size_t i=0; i<dim; i++)
          result[i] = (global[i] - lower_[i]) / (upper_[i] - lower_[i]);
      } else if (dim != 0) {          // slow case
        size_t lc=0;
        for (size_t i=0; i<coorddim; i++)
          if (axes_[i])
            result[lc++] = (global[i] - lower_[i]) / (upper_[i] - lower_[i]);
      }
      return result;
    }

    /** \brief Jacobian transposed of the transformation from local to global coordinates */
    JacobianTransposed jacobianTransposed(DUNE_UNUSED const LocalCoordinate& local) const
    {
      JacobianTransposed result;

      // Actually compute the result.  Computes different methods depending
      // on what kind of matrix JacobianTransposed is.
      jacobianTransposed(result);

      return result;
    }

    /** \brief Jacobian transposed of the transformation from local to global coordinates */
    JacobianInverseTransposed jacobianInverseTransposed(DUNE_UNUSED const LocalCoordinate& local) const
    {
      JacobianInverseTransposed result;

      // Actually compute the result.  Computes different methods depending
      // on what kind of matrix JacobianTransposed is.
      jacobianInverseTransposed(result);

      return result;
    }

    /** \brief Return the integration element, i.e., the determinant term in the integral
               transformation formula
     */
    ctype integrationElement(DUNE_UNUSED const LocalCoordinate& local) const
    {
      return volume();
    }

    /** \brief Return center of mass of the element */
    GlobalCoordinate center() const
    {
      GlobalCoordinate result;
      if (dim==0)
        result = lower_;
      else {
        // Since lower_==upper_ for unused coordinates, this always does the right thing
        for (size_t i=0; i<coorddim; i++)
          result[i] = 0.5 * (lower_[i] + upper_[i]);
      }
      return result;
    }

    /** \brief Return the number of corners of the element */
    int corners() const
    {
      return 1<<dim;
    }

    /** \brief Return world coordinates of the k-th corner of the element */
    GlobalCoordinate corner(int k) const
    {
      GlobalCoordinate result;
      if (dim == coorddim) {         // fast case
        for (size_t i=0; i<coorddim; i++)
          result[i] = (k & (1<<i)) ? upper_[i] : lower_[i];
      } if (dim == 0) {         // vertex
        result = lower_;            // rely on named return-type optimization
      } else {                // slow case
        unsigned int mask = 1;

        for (size_t i=0; i<coorddim; i++) {
          if (not axes_[i])
            result[i] = lower_[i];
          else {
            result[i] = (k & mask) ? upper_[i] : lower_[i];
            mask = (mask<<1);
          }
        }
      }


      return result;
    }

    /** \brief Return the element volume */
    ctype volume() const
    {
      ctype vol = 1;
      if (dim == coorddim) {         // fast case
        for (size_t i=0; i<dim; i++)
          vol *= upper_[i] - lower_[i];
        // do nothing if dim == 0
      } else if (dim != 0) {         // slow case
        for (size_t i=0; i<coorddim; i++)
          if (axes_[i])
            vol *= upper_[i] - lower_[i];
      }
      return vol;
    }

    /** \brief Return if the element is affine.  Here: yes */
    bool affine() const
    {
      return true;
    }

  private:
    // jacobianTransposed: fast case --> diagonal matrix
    void jacobianTransposed ( DiagonalMatrix<ctype,dim> &jacobianTransposed ) const
    {
      for (size_t i=0; i<dim; i++)
        jacobianTransposed.diagonal()[i] = upper_[i] - lower_[i];
    }

    // jacobianTransposed: slow case --> dense matrix
    void jacobianTransposed ( FieldMatrix<ctype,dim,coorddim> &jacobianTransposed ) const
    {
      if (dim==0)
          return;

      size_t lc = 0;
      for (size_t i=0; i<coorddim; i++)
        if (axes_[i])
          jacobianTransposed[lc++][i] = upper_[i] - lower_[i];
    }

    // jacobianInverseTransposed: fast case --> diagonal matrix
    void jacobianInverseTransposed ( DiagonalMatrix<ctype,dim> &jacobianInverseTransposed ) const
    {
      for (size_t i=0; i<dim; i++)
        jacobianInverseTransposed.diagonal()[i] = 1.0 / (upper_[i] - lower_[i]);
    }

    // jacobianInverseTransposed: slow case --> dense matrix
    void jacobianInverseTransposed ( FieldMatrix<ctype,coorddim,dim> &jacobianInverseTransposed ) const
    {
      if (dim==0)
          return;

      size_t lc = 0;
      for (size_t i=0; i<coorddim; i++)
        if (axes_[i])
          jacobianInverseTransposed[i][lc++] = 1.0 / (upper_[i] - lower_[i]);
    }

    Dune::FieldVector<ctype,coorddim> lower_;

    Dune::FieldVector<ctype,coorddim> upper_;

    std::bitset<coorddim> axes_;
  };

} // namespace Dune
#endif