This file is indexed.

/usr/include/dune/geometry/affinegeometry.hh is in libdune-geometry-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_GEOMETRY_AFFINEGEOMETRY_HH
#define DUNE_GEOMETRY_AFFINEGEOMETRY_HH

/** \file
 *  \brief An implementation of the Geometry interface for affine geometries
 *  \author Martin Nolte
 */

#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>

#include <dune/geometry/type.hh>
#include <dune/geometry/genericgeometry/geometrytraits.hh>
#include <dune/geometry/genericgeometry/matrixhelper.hh>

namespace Dune
{

  // External Forward Declarations
  // -----------------------------

  template< class ctype, int dim >
  class ReferenceElement;

  template< class ctype, int dim >
  struct ReferenceElements;



  /** \brief Implementation of the Geometry interface for affine geometries
   * \tparam ct Type used for coordinates
   * \tparam mydim Dimension of the geometry
   * \tparam cdim Dimension of the world space
   */
  template< class ct, int mydim, int cdim>
  class AffineGeometry
  {
  public:

    /** \brief Type used for coordinates */
    typedef ct ctype;

    /** \brief Dimension of the geometry */
    static const int mydimension= mydim;

    /** \brief Dimension of the world space */
    static const int coorddimension = cdim;

    /** \brief Type for local coordinate vector */
    typedef FieldVector< ctype, mydimension > LocalCoordinate;

    /** \brief Type for coordinate vector in world space */
    typedef FieldVector< ctype, coorddimension > GlobalCoordinate;

    /** \brief Type for the transposed Jacobian matrix */
    typedef FieldMatrix< ctype, mydimension, coorddimension > JacobianTransposed;

    /** \brief Type for the transposed inverse Jacobian matrix */
    typedef FieldMatrix< ctype, coorddimension, mydimension > JacobianInverseTransposed;

  private:
    //! type of reference element
    typedef Dune::ReferenceElement< ctype, mydimension > ReferenceElement;

    typedef Dune::ReferenceElements< ctype, mydimension > ReferenceElements;

    // Helper class to compute a matrix pseudo inverse
    typedef GenericGeometry::MatrixHelper< GenericGeometry::DuneCoordTraits< ct > > MatrixHelper;

  public:
    /** \brief Create affine geometry from reference element, one vertex, and the Jacobian matrix */
    AffineGeometry ( const ReferenceElement &refElement, const GlobalCoordinate &origin,
                     const JacobianTransposed &jt )
      : refElement_(&refElement), origin_(origin), jacobianTransposed_(jt)
    {
      integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
    }

    /** \brief Create affine geometry from GeometryType, one vertex, and the Jacobian matrix */
    AffineGeometry ( Dune::GeometryType gt, const GlobalCoordinate &origin,
                     const JacobianTransposed &jt )
      : refElement_( &ReferenceElements::general( gt ) ), origin_(origin), jacobianTransposed_( jt )
    {
      integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
    }

    /** \brief Create affine geometry from reference element and a vector of vertex coordinates */
    template< class CoordVector >
    AffineGeometry ( const ReferenceElement &refElement, const CoordVector &coordVector )
      : refElement_(&refElement), origin_(coordVector[0])
    {
      for( int i = 0; i < mydimension; ++i )
        jacobianTransposed_[ i ] = coordVector[ i+1 ] - origin_;
      integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
    }

    /** \brief Create affine geometry from GeometryType and a vector of vertex coordinates */
    template< class CoordVector >
    AffineGeometry ( Dune::GeometryType gt, const CoordVector &coordVector )
      : refElement_(&ReferenceElements::general( gt )), origin_(coordVector[0] )
    {
      for( int i = 0; i < mydimension; ++i )
        jacobianTransposed_[ i ] = coordVector[ i+1 ] - origin_;
      integrationElement_ = MatrixHelper::template rightInvA< mydimension, coorddimension >( jacobianTransposed_, jacobianInverseTransposed_ );
    }

    /** \brief Always true: this is an affine geometry */
    bool affine () const { return true; }

    /** \brief Obtain the type of the reference element */
    Dune::GeometryType type () const { return refElement_->type(); }

    /** \brief Obtain number of corners of the corresponding reference element */
    int corners () const { return refElement_->size( mydimension ); }

    /** \brief Obtain coordinates of the i-th corner */
    GlobalCoordinate corner ( int i ) const
    {
      return global( refElement_->position( i, mydimension ) );
    }

    /** \brief Obtain the centroid of the mapping's image */
    GlobalCoordinate center () const { return global( refElement_->position( 0, 0 ) ); }

    /** \brief Evaluate the mapping
     *
     *  \param[in]  local  local coordinate to map
     *
     *  \returns corresponding global coordinate
     */
    GlobalCoordinate global ( const LocalCoordinate &local ) const
    {
      GlobalCoordinate global( origin_ );
      jacobianTransposed_.umtv( local, global );
      return global;
    }

    /** \brief Evaluate the inverse mapping
     *
     *  \param[in]  global  global coordinate to map
     *
     *  \return corresponding local coordinate
     *
     *  The returned local coordinate y minimizes
     *  \code
     *  (global( y ) - x).two_norm()
     *  \endcode
     *  on the entire affine hull of the reference element.  This degenerates
     *  to the inverse map if the argument y is in the range of the map.
     */
    LocalCoordinate local ( const GlobalCoordinate &global ) const
    {
      LocalCoordinate local;
      jacobianInverseTransposed_.mtv( global - origin_, local );
      return local;
    }

    /** \brief Obtain the integration element
     *
     *  If the Jacobian of the mapping is denoted by $J(x)$, the integration
     *  integration element \f$\mu(x)\f$ is given by
     *  \f[ \mu(x) = \sqrt{|\det (J^T(x) J(x))|}.\f]
     *
     *  \param[in]  local  local coordinate to evaluate the integration element in
     *
     *  \returns the integration element \f$\mu(x)\f$.
     */
    ctype integrationElement ( const LocalCoordinate &local ) const
    {
      DUNE_UNUSED_PARAMETER(local);
      return integrationElement_;
    }

    /** \brief Obtain the volume of the element */
    ctype volume () const
    {
      return integrationElement_ * refElement_->volume();
    }

    /** \brief Obtain the transposed of the Jacobian
     *
     *  \param[in]  local  local coordinate to evaluate Jacobian in
     *
     *  \returns a reference to the transposed of the Jacobian
     */
    const JacobianTransposed &jacobianTransposed ( const LocalCoordinate &local ) const
    {
      DUNE_UNUSED_PARAMETER(local);
      return jacobianTransposed_;
    }

    /** \brief Obtain the transposed of the Jacobian's inverse
     *
     *  The Jacobian's inverse is defined as a pseudo-inverse. If we denote
     *  the Jacobian by \f$J(x)\f$, the following condition holds:
     *  \f[J^{-1}(x) J(x) = I.\f]
     */
    const JacobianInverseTransposed &jacobianInverseTransposed ( const LocalCoordinate &local ) const
    {
      DUNE_UNUSED_PARAMETER(local);
      return jacobianInverseTransposed_;
    }

  private:
    const ReferenceElement* refElement_;
    GlobalCoordinate origin_;
    JacobianTransposed jacobianTransposed_;
    JacobianInverseTransposed jacobianInverseTransposed_;
    ctype integrationElement_;

  };

} // namespace Dune

#endif // #ifndef DUNE_GEOMETRY_AFFINEGEOMETRY_HH