This file is indexed.

/usr/include/dune/common/iteratorfacades.hh is in libdune-common-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_ITERATORFACADES_HH
#define DUNE_ITERATORFACADES_HH
#include <iterator>
#include "typetraits.hh"

namespace Dune
{
  /*! \defgroup IteratorFacades Iterator facades
     \ingroup Common

     \brief Iterator facades for writing stl conformant iterators.

     With using these facades writing iterators for arbitrary containers becomes much less
     cumbersome as only few functions have to be implemented. All other functions needed by
     the stl are provided by the facades using the Barton-Nackman trick (also known as
     curiously recurring template pattern).

     The following example illustrates how a random access iterator might be written:

     \code
     #include<dune/common/iteratorfacades.hh>

     ...

     template<class C, class T>
     class TestIterator : public Dune::BidirectionalIteratorFacade<TestIterator<C,T>,T, T&, int>
     {
      friend class TestIterator<typename remove_const<C>::type, typename remove_const<T>::type >;
      friend class TestIterator<const typename remove_const<C>::type, const typename remove_const<T>::type >;

     public:

      // Constructors needed by the facade iterators.
      TestIterator(): container_(0), position_(0)
      { }

      TestIterator(C& cont, int pos)
        : container_(&cont), position_(pos)
      {}

      TestIterator(const TestIterator<typename remove_const<C>::type, typename remove_const<T>::type >& other)
        : container_(other.container_), position_(other.position_)
      {}


      TestIterator(const TestIterator<const typename remove_const<C>::type, const typename remove_const<T>::type >& other)
        : container_(other.container_), position_(other.position_)
      {}

      // Methods needed by the forward iterator
      bool equals(const TestIterator<typename remove_const<C>::type,typename remove_const<T>::type>& other) const
      {
        return position_ == other.position_ && container_ == other.container_;
      }


      bool equals(const TestIterator<const typename remove_const<C>::type,const typename remove_const<T>::type>& other) const
      {
        return position_ == other.position_ && container_ == other.container_;
      }

      T& dereference() const
      {
        return container_->values_[position_];
      }

      void increment()
      {
     ++position_;
      }

      // Additional function needed by BidirectionalIterator
      void decrement()
     {
        --position_;
      }

      // Additional function needed by RandomAccessIterator
      T& elementAt(int i)const
      {
        return container_->operator[](position_+i);
      }

      void advance(int n)
      {
        position_=position_+n;
      }

      std::ptrdiff_t distanceTo(TestIterator<const typename remove_const<C>::type,const typename remove_const<T>::type> other) const
      {
        assert(other.container_==container_);
        return other.position_ - position_;
      }

      std::ptrdiff_t distanceTo(TestIterator<const typename remove_const<C>::type, typename remove_const<T>::type> other) const
      {
        assert(other.container_==container_);
        return other.position_ - position_;
      }
     private:
      C *container_;
      size_t position_;
     };

     \endcode
     See dune/common/test/iteratorbase.hh for details.
   */


  /**
   * @file
   * @brief This file implements iterator facade classes for writing stl conformant iterators.
   *
   * With using these facades writing iterators for arbitrary containers becomes much less
   * cumbersome as only few functions have to be implemented. All other functions needed by
   * the stl are provided by the facades using the Barton-Nackman trick (also known as
   * curiously recurring template pattern.
   */

  /** @addtogroup IteratorFacades
   *
   * @{
   */
  /**
   * @brief Base class for stl conformant forward iterators.
   *
   * \tparam T The derived class
   * \tparam V The value type
   * \tparam R The reference type
   * \tparam D The type for differences between two iterators
   */
  template<class T, class V, class R = V&, class D = std::ptrdiff_t>
  class ForwardIteratorFacade :
    public std::iterator< std::forward_iterator_tag,
        typename remove_const<V>::type,                   // std::iterator needs mutable value type
        D,
        V*,
        R>
  {

  public:
    /**
     * @brief The type of derived iterator.
     *
     * The iterator has to define following
     * functions have to be present:
     *
     * \code
     *
     * // Access the value referred to.
     * Reference dereference() const;
     *
     * // Compare for equality with iterator j
     * bool equals(j);
     *
     * // position the iterator at the next element.
     * void increment()
     *
     * // check for equality with other iterator
     * bool equals(other)
     * \endcode
     *
     * For an elaborate explanation see the
     * <A HREF="http://www.sgi.com/tech/stl/iterator_traits.html">STL Documentation</A>!
     */
    typedef T DerivedType;

    /**
     * @brief The type of value accessed through the iterator.
     */
    typedef V Value;

    /**
     * @brief The pointer to the Value.
     */
    typedef V* Pointer;

    /**
     * @brief The type of the difference between two positions.
     */
    typedef D DifferenceType;

    /**
     * @brief The type of the reference to the values accessed.
     */
    typedef R Reference;

    /** @brief Dereferencing operator. */
    Reference operator*() const
    {
      return static_cast<DerivedType const*>(this)->dereference();
    }

    Pointer operator->() const
    {
      return &(static_cast<const DerivedType *>(this)->dereference());
    }

    /** @brief Preincrement operator. */
    DerivedType& operator++()
    {
      static_cast<DerivedType *>(this)->increment();
      return *static_cast<DerivedType *>(this);
    }

    /** @brief Postincrement operator. */
    DerivedType operator++(int)
    {
      DerivedType tmp(static_cast<DerivedType const&>(*this));
      this->operator++();
      return tmp;
    }
  };

  /**
   * @brief Checks for equality.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator==(const ForwardIteratorFacade<T1,V1,R1,D>& lhs,
             const ForwardIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return static_cast<const T1&>(lhs).equals(static_cast<const T2&>(rhs));
    else
      return static_cast<const T2&>(rhs).equals(static_cast<const T1&>(lhs));
  }

  /**
   * @brief Checks for inequality.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator!=(const ForwardIteratorFacade<T1,V1,R1,D>& lhs,
             const ForwardIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return !static_cast<const T1&>(lhs).equals(static_cast<const T2&>(rhs));
    else
      return !static_cast<const T2&>(rhs).equals(static_cast<const T1&>(lhs));
  }

  /**
   * @brief Facade class for stl conformant bidirectional iterators.
   *
   */
  template<class T, class V, class R = V&, class D = std::ptrdiff_t>
  class BidirectionalIteratorFacade :
    public std::iterator< std::bidirectional_iterator_tag,
        typename remove_const<V>::type,                   // std::iterator needs mutable value type
        D,
        V*,
        R>
  {

  public:
    /**
     * @brief The type of derived iterator.
     *
     * The iterator has to define following
     * functions have to be present:
     *
     * \code
     *
     * // Access the value referred to.
     * Reference dereference() const;
     *
     * // Compare for equality with j
     * bool equals(j);
     *
     * // position the iterator at the next element.
     * void increment()
     *
     * // position the iterator at the previous element.
     * void decrement()
     *
     * \endcode
     *
     * For an elaborate explanation see the
     * <A HREF="http://www.sgi.com/tech/stl/iterator_traits.html">STL Documentation</A>
     */
    typedef T DerivedType;

    /**
     * @brief The type of value accessed through the iterator.
     */
    typedef V Value;

    /**
     * @brief The pointer to the Value.
     */
    typedef V* Pointer;

    /**
     * @brief The type of the difference between two positions.
     */
    typedef D DifferenceType;

    /**
     * @brief The type of the reference to the values accessed.
     */
    typedef R Reference;

    /** @brief Dereferencing operator. */
    Reference operator*() const
    {
      return static_cast<DerivedType const*>(this)->dereference();
    }

    Pointer operator->() const
    {
      return &(static_cast<const DerivedType *>(this)->dereference());
    }

    /** @brief Preincrement operator. */
    DerivedType& operator++()
    {
      static_cast<DerivedType *>(this)->increment();
      return *static_cast<DerivedType *>(this);
    }

    /** @brief Postincrement operator. */
    DerivedType operator++(int)
    {
      DerivedType tmp(static_cast<DerivedType const&>(*this));
      this->operator++();
      return tmp;
    }


    /** @brief Preincrement operator. */
    DerivedType& operator--()
    {
      static_cast<DerivedType *>(this)->decrement();
      return *static_cast<DerivedType *>(this);
    }

    /** @brief Postincrement operator. */
    DerivedType operator--(int)
    {
      DerivedType tmp(static_cast<DerivedType const&>(*this));
      this->operator--();
      return tmp;
    }
  };

  /**
   * @brief Checks for equality.
   *
   * This operation is only defined if T2 is convertible to T1, otherwise it
   * is removed from the overload set since the enable_if for the return type
   * yield an invalid type expression.
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename enable_if<Conversion<T2,T1>::exists,bool>::type
  operator==(const BidirectionalIteratorFacade<T1,V1,R1,D>& lhs,
             const BidirectionalIteratorFacade<T2,V2,R2,D>& rhs)
  {
    return static_cast<const T1&>(lhs).equals(static_cast<const T2&>(rhs));
  }

  /**
   * @brief Checks for equality.
   *
   * This operation is only defined if either T1 is convertible to T2, and T2
   * is not convetible to T1.  Otherwise the operator is removed from the
   * overload set since the enable_if for the return type yield an invalid
   * type expression.
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline
  typename enable_if<Conversion<T1,T2>::exists && !Conversion<T2,T1>::exists,
      bool>::type
  operator==(const BidirectionalIteratorFacade<T1,V1,R1,D>& lhs,
             const BidirectionalIteratorFacade<T2,V2,R2,D>& rhs)
  {
    return static_cast<const T2&>(rhs).equals(static_cast<const T1&>(lhs));
  }

  /**
   * @brief Checks for inequality.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator!=(const BidirectionalIteratorFacade<T1,V1,R1,D>& lhs,
             const BidirectionalIteratorFacade<T2,V2,R2,D>& rhs)
  {
    return !(lhs == rhs);
  }

  /**
   * @brief Base class for stl conformant forward iterators.
   *
   */
  template<class T, class V, class R = V&, class D = std::ptrdiff_t>
  class RandomAccessIteratorFacade :
    public std::iterator< std::random_access_iterator_tag,
        typename remove_const<V>::type,                   // std::iterator needs mutable value type
        D,
        V*,
        R>
  {

  public:
    /**
     * @brief The type of derived iterator.
     *
     * The iterator has to define following
     * functions have to be present:
     *
     * \code
     *
     * // Access the value referred to.
     * Reference dereference() const;
     * // Access the value at some other location
     * Reference elementAt(n) const;
     *
     * // Compare for equality with j
     * bool equals(j);
     *
     * // position the iterator at the next element.
     * void increment()
     *
     * // position the iterator at the previous element.
     * void decrement()
     *
     * // advance the iterator by a number of positions-
     * void advance(DifferenceType n);
     * // calculate the distance to another iterator.
     * // One should incorporate an assertion wether
     * // the same containers are referenced
     * DifferenceType distanceTo(j) const;
     * \endcode
     *
     * For an elaborate explanation see the
     * <A HREF="http://www.sgi.com/tech/stl/iterator_traits.html">STL Documentation</A>
     */
    typedef T DerivedType;

    /**
     * @brief The type of value accessed through the iterator.
     */
    typedef V Value;

    /**
     * @brief The pointer to the Value.
     */
    typedef V* Pointer;

    /**
     * @brief The type of the difference between two positions.
     */
    typedef D DifferenceType;

    /**
     * @brief The type of the reference to the values accessed.
     */
    typedef R Reference;

    /** @brief Dereferencing operator. */
    Reference operator*() const
    {
      return static_cast<DerivedType const*>(this)->dereference();
    }

    Pointer operator->() const
    {
      return &(static_cast<const DerivedType *>(this)->dereference());
    }

    /**
     * @brief Get the element n positions from the current one.
     * @param n The distance to the element.
     * @return The element at that distance.
     */
    Reference operator[](DifferenceType n) const
    {
      return static_cast<const DerivedType *>(this)->elementAt(n);
    }

    /** @brief Preincrement operator. */
    DerivedType& operator++()
    {
      static_cast<DerivedType *>(this)->increment();
      return *static_cast<DerivedType *>(this);
    }

    /** @brief Postincrement operator. */
    DerivedType operator++(int)
    {
      DerivedType tmp(static_cast<DerivedType const&>(*this));
      this->operator++();
      return tmp;
    }

    DerivedType& operator+=(DifferenceType n)
    {
      static_cast<DerivedType *>(this)->advance(n);
      return *static_cast<DerivedType *>(this);
    }

    DerivedType operator+(DifferenceType n) const
    {
      DerivedType tmp(static_cast<DerivedType const&>(*this));
      tmp.advance(n);
      return tmp;
    }


    /** @brief Predecrement operator. */
    DerivedType& operator--()
    {
      static_cast<DerivedType *>(this)->decrement();
      return *static_cast<DerivedType *>(this);
    }

    /** @brief Postdecrement operator. */
    DerivedType operator--(int)
    {
      DerivedType tmp(static_cast<DerivedType const&>(*this));
      this->operator--();
      return tmp;
    }

    DerivedType& operator-=(DifferenceType n)
    {
      static_cast<DerivedType *>(this)->advance(-n);
      return *static_cast<DerivedType *>(this);
    }

    DerivedType operator-(DifferenceType n) const
    {
      DerivedType tmp(static_cast<DerivedType const&>(*this));
      tmp.advance(-n);
      return tmp;
    }


  };

  /**
   * @brief Checks for equality.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator==(const RandomAccessIteratorFacade<T1,V1,R1,D>& lhs,
             const RandomAccessIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return static_cast<const T1&>(lhs).equals(static_cast<const T2&>(rhs));
    else
      return static_cast<const T2&>(rhs).equals(static_cast<const T1&>(lhs));
  }

  /**
   * @brief Checks for inequality.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator!=(const RandomAccessIteratorFacade<T1,V1,R1,D>& lhs,
             const RandomAccessIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return !static_cast<const T1&>(lhs).equals(static_cast<const T2&>(rhs));
    else
      return !static_cast<const T2&>(rhs).equals(static_cast<const T1&>(lhs));
  }

  /**
   * @brief Comparison operator.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator<(const RandomAccessIteratorFacade<T1,V1,R1,D>& lhs,
            const RandomAccessIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return static_cast<const T1&>(lhs).distanceTo(static_cast<const T2&>(rhs))>0;
    else
      return static_cast<const T2&>(rhs).distanceTo(static_cast<const T1&>(lhs))<0;
  }


  /**
   * @brief Comparison operator.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator<=(const RandomAccessIteratorFacade<T1,V1,R1,D>& lhs,
             const RandomAccessIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return static_cast<const T1&>(lhs).distanceTo(static_cast<const T2&>(rhs))>=0;
    else
      return static_cast<const T2&>(rhs).distanceTo(static_cast<const T1&>(lhs))<=0;
  }


  /**
   * @brief Comparison operator.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator>(const RandomAccessIteratorFacade<T1,V1,R1,D>& lhs,
            const RandomAccessIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return static_cast<const T1&>(lhs).distanceTo(static_cast<const T2&>(rhs))<0;
    else
      return static_cast<const T2&>(rhs).distanceTo(static_cast<const T1&>(lhs))>0;
  }

  /**
   * @brief Comparison operator.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,bool>::type
  operator>=(const RandomAccessIteratorFacade<T1,V1,R1,D>& lhs,
             const RandomAccessIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return static_cast<const T1&>(lhs).distanceTo(static_cast<const T2&>(rhs))<=0;
    else
      return static_cast<const T2&>(rhs).distanceTo(static_cast<const T1&>(lhs))>=0;
  }

  /**
   * @brief Calculates the difference between two pointers.
   *
   * This operation is only defined if either D2
   * is convertible to D1 or vice versa. If that is
   * not the case the compiler will report an error
   * as EnableIfInterOperable<D1,D2,bool>::type is
   * not defined.
   *
   */
  template<class T1, class V1, class R1, class D,
      class T2, class V2, class R2>
  inline typename EnableIfInterOperable<T1,T2,D>::type
  operator-(const RandomAccessIteratorFacade<T1,V1,R1,D>& lhs,
            const RandomAccessIteratorFacade<T2,V2,R2,D>& rhs)
  {
    if(Conversion<T2,T1>::exists)
      return -static_cast<const T1&>(lhs).distanceTo(static_cast<const T2&>(rhs));
    else
      return static_cast<const T2&>(rhs).distanceTo(static_cast<const T1&>(lhs));
  }

  /** @} */
}
#endif