This file is indexed.

/usr/include/dune/common/diagonalmatrix.hh is in libdune-common-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_DIAGONAL_MATRIX_HH
#define DUNE_DIAGONAL_MATRIX_HH

/*! \file
   \brief  This file implements a quadratic diagonal matrix of fixed size.
 */

#include <algorithm>
#include <cassert>
#include <cmath>
#include <complex>
#include <cstddef>
#include <initializer_list>
#include <iostream>
#include <memory>

#include <dune/common/densematrix.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/genericiterator.hh>
#include <dune/common/typetraits.hh>
#include <dune/common/unused.hh>


namespace Dune {

  template< class K, int n > class DiagonalRowVectorConst;
  template< class K, int n > class DiagonalRowVector;
  template< class DiagonalMatrixType > class DiagonalMatrixWrapper;
  template< class C, class T, class R> class ContainerWrapperIterator;

  /**
      @addtogroup DenseMatVec
      @{
   */

  /**
     *@brief A diagonal matrix of static size.
   *
   * This is meant to be a replacement of FieldMatrix for the case that
   * it is a diagonal matrix.
   *
   * \tparam K Type used for scalars
   * \tparam n Matrix size
   */
  template<class K, int n>
  class DiagonalMatrix
  {
    typedef DiagonalMatrixWrapper< DiagonalMatrix<K,n> > WrapperType;

  public:
    //===== type definitions and constants

    //! export the type representing the field
    typedef K value_type;
    typedef value_type field_type;

    //! export the type representing the components
    typedef K block_type;

    //! The type used for the index access and size operations.
    typedef std::size_t size_type;

    //! We are at the leaf of the block recursion
    enum {
      //! The number of block levels we contain. This is 1.
      blocklevel = 1
    };

    //! Each row is implemented by a field vector
    typedef DiagonalRowVector<K,n> row_type;
    typedef row_type reference;
    typedef row_type row_reference;
    typedef DiagonalRowVectorConst<K,n> const_row_type;
    typedef const_row_type const_reference;
    typedef const_row_type const_row_reference;

    //! export size
    enum {
      //! The number of rows
      rows = n,
      //! The number of columns
      cols = n
    };

    //==== size

    size_type size () const
    {
      return rows;
    }

    //===== constructors

    //! Default constructor
    DiagonalMatrix () {}

    //! Constructor initializing the whole matrix with a scalar
    DiagonalMatrix (const K& k)
      : diag_(k)
    {}

    //! Constructor initializing the diagonal with a vector
    DiagonalMatrix (const FieldVector<K,n>& diag)
      : diag_(diag)
    {}

    /** \brief Construct diagonal matrix from an initializer list
     *
     * The elements of the list are copied into the diagonal elements of the matrix.
     * If the initializer list is shorter than the matrix diagonal (which has n elements),
     * the remaining matrix diagonal elements are left uninitialized.  If the initializer
     * list is longer, than only the first n elements will be copied into the matrix
     * diagonal.
     */
    DiagonalMatrix (std::initializer_list<K> const &l)
    {
      std::copy_n(l.begin(), std::min(static_cast<std::size_t>(rows),
                                      l.size()),
                 diag_.begin());
    }

    /** \brief Assignment from a scalar */
    DiagonalMatrix& operator= (const K& k)
    {
      diag_ = k;
      return *this;
    }

    /** \brief Check if matrix is the same object as the other matrix */
    bool identical(const DiagonalMatrix<K,n>& other) const
    {
      return (this==&other);
    }

    //===== iterator interface to rows of the matrix
    //! Iterator class for sequential access
    typedef ContainerWrapperIterator<const WrapperType, reference, reference> Iterator;
    //! typedef for stl compliant access
    typedef Iterator iterator;
    //! rename the iterators for easier access
    typedef Iterator RowIterator;
    //! rename the iterators for easier access
    typedef typename row_type::Iterator ColIterator;

    //! begin iterator
    Iterator begin ()
    {
      return Iterator(WrapperType(this),0);
    }

    //! end iterator
    Iterator end ()
    {
      return Iterator(WrapperType(this),n);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the rows, i.e. at the last row.
    Iterator beforeEnd ()
    {
      return Iterator(WrapperType(this),n-1);
    }

    //! @returns an iterator that is positioned before
    //! the first row of the matrix.
    Iterator beforeBegin ()
    {
      return Iterator(WrapperType(this),-1);
    }


    //! Iterator class for sequential access
    typedef ContainerWrapperIterator<const WrapperType, const_reference, const_reference> ConstIterator;
    //! typedef for stl compliant access
    typedef ConstIterator const_iterator;
    //! rename the iterators for easier access
    typedef ConstIterator ConstRowIterator;
    //! rename the iterators for easier access
    typedef typename const_row_type::ConstIterator ConstColIterator;

    //! begin iterator
    ConstIterator begin () const
    {
      return ConstIterator(WrapperType(this),0);
    }

    //! end iterator
    ConstIterator end () const
    {
      return ConstIterator(WrapperType(this),n);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the rows. i.e. at the last row.
    ConstIterator beforeEnd() const
    {
      return ConstIterator(WrapperType(this),n-1);
    }

    //! @returns an iterator that is positioned before
    //! the first row of the matrix.
    ConstIterator beforeBegin () const
    {
      return ConstIterator(WrapperType(this),-1);
    }



    //===== vector space arithmetic

    //! vector space addition
    DiagonalMatrix& operator+= (const DiagonalMatrix& y)
    {
      diag_ += y.diag_;
      return *this;
    }

    //! vector space subtraction
    DiagonalMatrix& operator-= (const DiagonalMatrix& y)
    {
      diag_ -= y.diag_;
      return *this;
    }

    //! vector space multiplication with scalar
    DiagonalMatrix& operator+= (const K& k)
    {
      diag_ += k;
      return *this;
    }

    //! vector space division by scalar
    DiagonalMatrix& operator-= (const K& k)
    {
      diag_ -= k;
      return *this;
    }

    //! vector space multiplication with scalar
    DiagonalMatrix& operator*= (const K& k)
    {
      diag_ *= k;
      return *this;
    }

    //! vector space division by scalar
    DiagonalMatrix& operator/= (const K& k)
    {
      diag_ /= k;
      return *this;
    }

    //===== comparison ops

    //! comparison operator
    bool operator==(const DiagonalMatrix& other) const
    {
      return diag_==other.diagonal();
    }

    //! incomparison operator
    bool operator!=(const DiagonalMatrix& other) const
    {
      return diag_!=other.diagonal();
    }


    //===== linear maps

    //! y = A x
    template<class X, class Y>
    void mv (const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; ++i)
        y[i] = diag_[i] * x[i];
    }

    //! y = A^T x
    template<class X, class Y>
    void mtv (const X& x, Y& y) const
    {
      mv(x, y);
    }

    //! y += A x
    template<class X, class Y>
    void umv (const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; ++i)
        y[i] += diag_[i] * x[i];
    }

    //! y += A^T x
    template<class X, class Y>
    void umtv (const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; ++i)
        y[i] += diag_[i] * x[i];
    }

    //! y += A^H x
    template<class X, class Y>
    void umhv (const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; i++)
        y[i] += conjugateComplex(diag_[i])*x[i];
    }

    //! y -= A x
    template<class X, class Y>
    void mmv (const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; ++i)
        y[i] -= diag_[i] * x[i];
    }

    //! y -= A^T x
    template<class X, class Y>
    void mmtv (const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; ++i)
        y[i] -= diag_[i] * x[i];
    }

    //! y -= A^H x
    template<class X, class Y>
    void mmhv (const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; i++)
        y[i] -= conjugateComplex(diag_[i])*x[i];
    }

    //! y += alpha A x
    template<class X, class Y>
    void usmv (const K& alpha, const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; i++)
        y[i] += alpha * diag_[i] * x[i];
    }

    //! y += alpha A^T x
    template<class X, class Y>
    void usmtv (const K& alpha, const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; i++)
        y[i] += alpha * diag_[i] * x[i];
    }

    //! y += alpha A^H x
    template<class X, class Y>
    void usmhv (const K& alpha, const X& x, Y& y) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (x.N()!=N()) DUNE_THROW(FMatrixError,"index out of range");
      if (y.N()!=M()) DUNE_THROW(FMatrixError,"index out of range");
#endif
      for (size_type i=0; i<n; i++)
        y[i] += alpha * conjugateComplex(diag_[i]) * x[i];
    }

    //===== norms

    //! frobenius norm: sqrt(sum over squared values of entries)
    double frobenius_norm () const
    {
      return diag_.two_norm();
    }

    //! square of frobenius norm, need for block recursion
    double frobenius_norm2 () const
    {
      return diag_.two_norm2();
    }

    //! infinity norm (row sum norm, how to generalize for blocks?)
    double infinity_norm () const
    {
      return diag_.infinity_norm();
    }

    //! simplified infinity norm (uses Manhattan norm for complex values)
    double infinity_norm_real () const
    {
      return diag_.infinity_norm_real();
    }



    //===== solve

    //! Solve system A x = b
    template<class V>
    void solve (V& x, const V& b) const
    {
      for (int i=0; i<n; i++)
        x[i] = b[i]/diag_[i];
    }

    //! Compute inverse
    void invert()
    {
      for (int i=0; i<n; i++)
        diag_[i] = 1/diag_[i];
    }

    //! calculates the determinant of this matrix
    K determinant () const
    {
      K det = diag_[0];
      for (int i=1; i<n; i++)
        det *= diag_[i];
      return det;
    }



    //===== sizes

    //! number of blocks in row direction
    size_type N () const
    {
      return n;
    }

    //! number of blocks in column direction
    size_type M () const
    {
      return n;
    }



    //===== query

    //! return true when (i,j) is in pattern
    bool exists (size_type i, size_type j) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (i<0 || i>=n) DUNE_THROW(FMatrixError,"row index out of range");
      if (j<0 || j>=n) DUNE_THROW(FMatrixError,"column index out of range");
#endif
      return i==j;
    }



    //! Sends the matrix to an output stream
    friend std::ostream& operator<< (std::ostream& s, const DiagonalMatrix<K,n>& a)
    {
      for (size_type i=0; i<n; i++) {
        for (size_type j=0; j<n; j++)
          s << ((i==j) ? a.diag_[i] : 0) << " ";
        s << std::endl;
      }
      return s;
    }

    //! Return reference object as row replacement
    reference operator[](size_type i)
    {
      return reference(const_cast<K*>(&diag_[i]), i);
    }

    //! Return const_reference object as row replacement
    const_reference operator[](size_type i) const
    {
      return const_reference(const_cast<K*>(&diag_[i]), i);
    }

    //! Get const reference to diagonal entry
    const K& diagonal(size_type i) const
    {
      return diag_[i];
    }

    //! Get reference to diagonal entry
    K& diagonal(size_type i)
    {
      return diag_[i];
    }

    //! Get const reference to diagonal vector
    const FieldVector<K,n>& diagonal() const
    {
      return diag_;
    }

    //! Get reference to diagonal vector
    FieldVector<K,n>& diagonal()
    {
      return diag_;
    }

  private:

    // the data, a FieldVector storing the diagonal
    FieldVector<K,n> diag_;
  };

#ifndef DOXYGEN // hide specialization
  /** \brief Special type for 1x1 matrices
   */
  template< class K >
  class DiagonalMatrix<K, 1> : public FieldMatrix<K, 1, 1>
  {
    typedef FieldMatrix<K,1,1> Base;
  public:
    //! The type used for index access and size operations
    typedef typename Base::size_type size_type;

    //! We are at the leaf of the block recursion
    enum {
      //! The number of block levels we contain.
      //! This is always one for this type.
      blocklevel = 1
    };

    typedef typename Base::row_type row_type;

    typedef typename Base::row_reference row_reference;
    typedef typename Base::const_row_reference const_row_reference;

    //! export size
    enum {
      //! \brief The number of rows.
      //! This is always one for this type.
      rows = 1,
      //! \brief The number of columns.
      //! This is always one for this type.
      cols = 1
    };


    //! Default Constructor
    DiagonalMatrix()
    {}

    //! Constructor initializing the whole matrix with a scalar
    DiagonalMatrix(const K& scalar)
    {
      (*this)[0][0] = scalar;
    }

    //! Get const reference to diagonal entry
    const K& diagonal(size_type) const
    {
      return (*this)[0][0];
    }

    //! Get reference to diagonal entry
    K& diagonal(size_type)
    {
      return (*this)[0][0];
    }

    //! Get const reference to diagonal vector
    const FieldVector<K,1>& diagonal() const
    {
      return (*this)[0];
    }

    //! Get reference to diagonal vector
    FieldVector<K,1>& diagonal()
    {
      return (*this)[0];
    }

  };
#endif


  template<class DiagonalMatrixType>
  class DiagonalMatrixWrapper
  {
    typedef typename DiagonalMatrixType::reference reference;
    typedef typename DiagonalMatrixType::const_reference const_reference;
    typedef typename DiagonalMatrixType::field_type K;
    typedef DiagonalRowVector<K, DiagonalMatrixType::rows> row_type;
    typedef std::size_t size_type;
    typedef DiagonalMatrixWrapper< DiagonalMatrixType> MyType;

    friend class ContainerWrapperIterator<const MyType, reference, reference>;
    friend class ContainerWrapperIterator<const MyType, const_reference, const_reference>;

  public:

    DiagonalMatrixWrapper() :
      mat_(0)
    {}

    DiagonalMatrixWrapper(const DiagonalMatrixType* mat) :
      mat_(const_cast<DiagonalMatrixType*>(mat))
    {}

    size_type realIndex(int i) const
    {
      return i;
    }

    row_type* pointer(int i) const
    {
      row_ = row_type(&(mat_->diagonal(i)), i);
      return &row_;
    }

    bool identical(const DiagonalMatrixWrapper& other) const
    {
      return mat_==other.mat_;
    }

  private:

    mutable DiagonalMatrixType* mat_;
    mutable row_type row_;
  };

  /** \brief
   *
   */
  template< class K, int n >
  class DiagonalRowVectorConst
  {
    template<class DiagonalMatrixType>
    friend class DiagonalMatrixWrapper;
    friend class ContainerWrapperIterator<DiagonalRowVectorConst<K,n>, const K, const K&>;

  public:
    // remember size of vector
    enum { dimension = n };

    // standard constructor and everything is sufficient ...

    //===== type definitions and constants

    //! export the type representing the field
    typedef K field_type;

    //! export the type representing the components
    typedef K block_type;

    //! The type used for the index access and size operation
    typedef std::size_t size_type;

    //! We are at the leaf of the block recursion
    enum {
      //! The number of block levels we contain
      blocklevel = 1
    };

    //! export size
    enum {
      //! The size of this vector.
      size = n
    };

    //! Constructor making uninitialized vector
    DiagonalRowVectorConst() :
      p_(0),
      row_(0)
    {}

    //! Constructor making vector with identical coordinates
    explicit DiagonalRowVectorConst (K* p, int col) :
      p_(p),
      row_(col)
    {}

    //===== access to components

    //! same for read only access
    const K& operator[] (size_type i) const
    {
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (i!=row_)
        DUNE_THROW(FMatrixError,"index is not contained in pattern");
#else
      DUNE_UNUSED_PARAMETER(i);
#endif
      return *p_;
    }

    // check if row is identical to other row (not only identical values)
    // since this is a proxy class we need to check equality of the stored pointer
    bool identical(const DiagonalRowVectorConst<K,n>& other) const
    {
      return ((p_ == other.p_)and (row_ == other.row_));
    }

    //! ConstIterator class for sequential access
    typedef ContainerWrapperIterator<DiagonalRowVectorConst<K,n>, const K, const K&> ConstIterator;
    //! typedef for stl compliant access
    typedef ConstIterator const_iterator;

    //! begin ConstIterator
    ConstIterator begin () const
    {
      return ConstIterator(*this,0);
    }

    //! end ConstIterator
    ConstIterator end () const
    {
      return ConstIterator(*this,1);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the rows. i.e. at the row.
    ConstIterator beforeEnd() const
    {
      return ConstIterator(*this,0);
    }

    //! @returns an iterator that is positioned before
    //! the first row of the matrix.
    ConstIterator beforeBegin () const
    {
      return ConstIterator(*this,-1);
    }

    //! Binary vector comparison
    bool operator== (const DiagonalRowVectorConst& y) const
    {
      return ((p_==y.p_)and (row_==y.row_));
    }

    //===== sizes

    //! number of blocks in the vector (are of size 1 here)
    size_type N () const
    {
      return n;
    }

    //! dimension of the vector space
    size_type dim () const
    {
      return n;
    }

    //! index of this row in surrounding matrix
    size_type rowIndex() const
    {
      return row_;
    }

    //! the diagonal value
    const K& diagonal() const
    {
      return *p_;
    }

  protected:

    size_type realIndex(int i) const
    {
      return rowIndex();
    }

    K* pointer(size_type i) const
    {
      return const_cast<K*>(p_);
    }

    DiagonalRowVectorConst* operator&()
    {
      return this;
    }

    // the data, very simply a pointer to the diagonal value and the row number
    K* p_;
    size_type row_;
  };

  template< class K, int n >
  class DiagonalRowVector : public DiagonalRowVectorConst<K,n>
  {
    template<class DiagonalMatrixType>
    friend class DiagonalMatrixWrapper;
    friend class ContainerWrapperIterator<DiagonalRowVector<K,n>, K, K&>;

  public:
    // standard constructor and everything is sufficient ...

    //===== type definitions and constants

    //! export the type representing the field
    typedef K field_type;

    //! export the type representing the components
    typedef K block_type;

    //! The type used for the index access and size operation
    typedef std::size_t size_type;

    //! Constructor making uninitialized vector
    DiagonalRowVector() : DiagonalRowVectorConst<K,n>()
    {}

    //! Constructor making vector with identical coordinates
    explicit DiagonalRowVector (K* p, int col) : DiagonalRowVectorConst<K,n>(p, col)
    {}

    //===== assignment from scalar
    //! Assignment operator for scalar
    DiagonalRowVector& operator= (const K& k)
    {
      *p_ = k;
      return *this;
    }

    //===== access to components

    //! random access
    K& operator[] (size_type i)
    {
      DUNE_UNUSED_PARAMETER(i);
#ifdef DUNE_FMatrix_WITH_CHECKING
      if (i!=row_)
        DUNE_THROW(FMatrixError,"index is contained in pattern");
#endif
      return *p_;
    }

    //! Iterator class for sequential access
    typedef ContainerWrapperIterator<DiagonalRowVector<K,n>, K, K&> Iterator;
    //! typedef for stl compliant access
    typedef Iterator iterator;

    //! begin iterator
    Iterator begin ()
    {
      return Iterator(*this, 0);
    }

    //! end iterator
    Iterator end ()
    {
      return Iterator(*this, 1);
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the rows, i.e. at the last row.
    Iterator beforeEnd ()
    {
      return Iterator(*this, 0);
    }

    //! @returns an iterator that is positioned before
    //! the first row of the matrix.
    Iterator beforeBegin ()
    {
      return Iterator(*this, -1);
    }

    //! ConstIterator class for sequential access
    typedef ContainerWrapperIterator<DiagonalRowVectorConst<K,n>, const K, const K&> ConstIterator;
    //! typedef for stl compliant access
    typedef ConstIterator const_iterator;

    using DiagonalRowVectorConst<K,n>::identical;
    using DiagonalRowVectorConst<K,n>::operator[];
    using DiagonalRowVectorConst<K,n>::operator==;
    using DiagonalRowVectorConst<K,n>::begin;
    using DiagonalRowVectorConst<K,n>::end;
    using DiagonalRowVectorConst<K,n>::beforeEnd;
    using DiagonalRowVectorConst<K,n>::beforeBegin;
    using DiagonalRowVectorConst<K,n>::N;
    using DiagonalRowVectorConst<K,n>::dim;
    using DiagonalRowVectorConst<K,n>::rowIndex;
    using DiagonalRowVectorConst<K,n>::diagonal;

  protected:

    DiagonalRowVector* operator&()
    {
      return this;
    }

  private:

    using DiagonalRowVectorConst<K,n>::p_;
    using DiagonalRowVectorConst<K,n>::row_;
  };


  // implement type traits
  template<class K, int n>
  struct const_reference< DiagonalRowVector<K,n> >
  {
    typedef DiagonalRowVectorConst<K,n> type;
  };

  template<class K, int n>
  struct const_reference< DiagonalRowVectorConst<K,n> >
  {
    typedef DiagonalRowVectorConst<K,n> type;
  };

  template<class K, int n>
  struct mutable_reference< DiagonalRowVector<K,n> >
  {
    typedef DiagonalRowVector<K,n> type;
  };

  template<class K, int n>
  struct mutable_reference< DiagonalRowVectorConst<K,n> >
  {
    typedef DiagonalRowVector<K,n> type;
  };



  /** \brief Iterator class for sparse vector-like containers
   *
   * This class provides an iterator for sparse vector like containers.
   * It contains a ContainerWrapper that must provide the translation
   * from the position in the underlying container to the index
   * in the sparse container.
   *
   * The ContainerWrapper must be default and copy-constructable.
   * Furthermore it must provide the methods:
   *
   * bool identical(other)      - check if this is identical to other (same container, not only equal)
   * T* pointer(position)       - get pointer to data at position in underlying container
   * size_t realIndex(position) - get index in sparse container for position in underlying container
   *
   * Notice that the iterator stores a ContainerWrapper.
   * This allows one to use proxy classes as underlying container
   * and as returned reference type.
   *
   * \tparam CW The container wrapper class
   * \tparam T The contained type
   * \tparam R The reference type returned by dereference
   */
  template<class CW, class T, class R>
  class ContainerWrapperIterator : public BidirectionalIteratorFacade<ContainerWrapperIterator<CW,T,R>,T, R, int>
  {
    typedef typename remove_const<CW>::type NonConstCW;

    friend class ContainerWrapperIterator<CW, typename mutable_reference<T>::type, typename mutable_reference<R>::type>;
    friend class ContainerWrapperIterator<CW, typename const_reference<T>::type, typename const_reference<R>::type>;

    typedef ContainerWrapperIterator<CW, typename mutable_reference<T>::type, typename mutable_reference<R>::type> MyType;
    typedef ContainerWrapperIterator<CW, typename const_reference<T>::type, typename const_reference<R>::type> MyConstType;

  public:

    // Constructors needed by the facade iterators.
    ContainerWrapperIterator() :
      containerWrapper_(),
      position_(0)
    {}

    ContainerWrapperIterator(CW containerWrapper, int position) :
      containerWrapper_(containerWrapper),
      position_(position)
    {}

    template<class OtherContainerWrapperIteratorType>
    ContainerWrapperIterator(OtherContainerWrapperIteratorType& other) :
      containerWrapper_(other.containerWrapper_),
      position_(other.position_)
    {}

    ContainerWrapperIterator(const MyType& other) :
      containerWrapper_(other.containerWrapper_),
      position_(other.position_)
    {}

    ContainerWrapperIterator(const MyConstType& other) :
      containerWrapper_(other.containerWrapper_),
      position_(other.position_)
    {}

    template<class OtherContainerWrapperIteratorType>
    ContainerWrapperIterator& operator=(OtherContainerWrapperIteratorType& other)
    {
      containerWrapper_ = other.containerWrapper_;
      position_ = other.position_;
    }

    // This operator is needed since we can not get the address of the
    // temporary object returned by dereference
    T* operator->() const
    {
      return containerWrapper_.pointer(position_);
    }

    // Methods needed by the forward iterator
    bool equals(const MyType& other) const
    {
      return position_ == other.position_ && containerWrapper_.identical(other.containerWrapper_);
    }

    bool equals(const MyConstType& other) const
    {
      return position_ == other.position_ && containerWrapper_.identical(other.containerWrapper_);
    }

    R dereference() const
    {
      return *containerWrapper_.pointer(position_);
    }

    void increment()
    {
      ++position_;
    }

    // Additional function needed by BidirectionalIterator
    void decrement()
    {
      --position_;
    }

    // Additional function needed by RandomAccessIterator
    R elementAt(int i) const
    {
      return *containerWrapper_.pointer(position_+i);
    }

    void advance(int n)
    {
      position_=position_+n;
    }

    template<class OtherContainerWrapperIteratorType>
    std::ptrdiff_t distanceTo(OtherContainerWrapperIteratorType& other) const
    {
      assert(containerWrapper_.identical(other));
      return other.position_ - position_;
    }

    std::ptrdiff_t index() const
    {
      return containerWrapper_.realIndex(position_);
    }

  private:
    NonConstCW containerWrapper_;
    size_t position_;
  };



  template<class M, class K, int n>
  void istl_assign_to_fmatrix(DenseMatrix<M>& fm, const DiagonalMatrix<K,n>& s)
  {
    assert( fm.rows() == n );
    assert( fm.cols() == n );
    fm = K();
    for(int i=0; i<n; ++i)
      fm[i][i] = s.diagonal()[i];
  }
  /* @} */
} // end namespace
#endif