This file is indexed.

/usr/include/dune/common/densevector.hh is in libdune-common-dev 2.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_DENSEVECTOR_HH
#define DUNE_DENSEVECTOR_HH

#include <limits>
#include <type_traits>

#include "genericiterator.hh"
#include "ftraits.hh"
#include "matvectraits.hh"
#include "promotiontraits.hh"
#include "dotproduct.hh"

namespace Dune {

  // forward declaration of template
  template<typename V> class DenseVector;

  template<typename V>
  struct FieldTraits< DenseVector<V> >
  {
    typedef typename FieldTraits< typename DenseMatVecTraits<V>::value_type >::field_type field_type;
    typedef typename FieldTraits< typename DenseMatVecTraits<V>::value_type >::real_type real_type;
  };

  /** @defgroup DenseMatVec Dense Matrix and Vector Template Library
      @ingroup Common
      @{
   */

  /*! \file
   * \brief Implements the dense vector interface, with an exchangeable storage class
   */

  namespace fvmeta
  {
    /**
       \private
       \memberof Dune::DenseVector
     */
    template<class K>
    inline typename FieldTraits<K>::real_type absreal (const K& k)
    {
      using std::abs;
      return abs(k);
    }

    /**
       \private
       \memberof Dune::DenseVector
     */
    template<class K>
    inline typename FieldTraits<K>::real_type absreal (const std::complex<K>& c)
    {
      using std::abs;
      return abs(c.real()) + abs(c.imag());
    }

    /**
       \private
       \memberof Dune::DenseVector
     */
    template<class K>
    inline typename FieldTraits<K>::real_type abs2 (const K& k)
    {
      return k*k;
    }

    /**
       \private
       \memberof Dune::DenseVector
     */
    template<class K>
    inline typename FieldTraits<K>::real_type abs2 (const std::complex<K>& c)
    {
      return c.real()*c.real() + c.imag()*c.imag();
    }

    /**
       \private
       \memberof Dune::DenseVector
     */
    template<class K, bool isInteger = std::numeric_limits<K>::is_integer>
    struct Sqrt
    {
      static inline typename FieldTraits<K>::real_type sqrt (const K& k)
      {
        using std::sqrt;
        return sqrt(k);
      }
    };

    /**
       \private
       \memberof Dune::DenseVector
     */
    template<class K>
    struct Sqrt<K, true>
    {
      static inline typename FieldTraits<K>::real_type sqrt (const K& k)
      {
        using std::sqrt;
        return typename FieldTraits<K>::real_type(sqrt(double(k)));
      }
    };

    /**
       \private
       \memberof Dune::DenseVector
     */
    template<class K>
    inline typename FieldTraits<K>::real_type sqrt (const K& k)
    {
      return Sqrt<K>::sqrt(k);
    }

  }

  /*! \brief Generic iterator class for dense vector and matrix implementations

     provides sequential access to DenseVector, FieldVector and FieldMatrix
   */
  template<class C, class T, class R =T&>
  class DenseIterator :
    public Dune::RandomAccessIteratorFacade<DenseIterator<C,T,R>,T, R, std::ptrdiff_t>
  {
    friend class DenseIterator<typename remove_const<C>::type, typename remove_const<T>::type, typename mutable_reference<R>::type >;
    friend class DenseIterator<const typename remove_const<C>::type, const typename remove_const<T>::type, typename const_reference<R>::type >;

    typedef DenseIterator<typename remove_const<C>::type, typename remove_const<T>::type, typename mutable_reference<R>::type > MutableIterator;
    typedef DenseIterator<const typename remove_const<C>::type, const typename remove_const<T>::type, typename const_reference<R>::type > ConstIterator;
  public:

    /**
     * @brief The type of the difference between two positions.
     */
    typedef std::ptrdiff_t DifferenceType;

    /**
     * @brief The type to index the underlying container.
     */
    typedef typename C::size_type SizeType;

    // Constructors needed by the base iterators.
    DenseIterator()
      : container_(0), position_()
    {}

    DenseIterator(C& cont, SizeType pos)
      : container_(&cont), position_(pos)
    {}

    DenseIterator(const MutableIterator & other)
      : container_(other.container_), position_(other.position_)
    {}

    DenseIterator(const ConstIterator & other)
      : container_(other.container_), position_(other.position_)
    {}

    // Methods needed by the forward iterator
    bool equals(const MutableIterator &other) const
    {
      return position_ == other.position_ && container_ == other.container_;
    }


    bool equals(const ConstIterator & other) const
    {
      return position_ == other.position_ && container_ == other.container_;
    }

    R dereference() const {
      return container_->operator[](position_);
    }

    void increment(){
      ++position_;
    }

    // Additional function needed by BidirectionalIterator
    void decrement(){
      --position_;
    }

    // Additional function needed by RandomAccessIterator
    R elementAt(DifferenceType i) const {
      return container_->operator[](position_+i);
    }

    void advance(DifferenceType n){
      position_=position_+n;
    }

    DifferenceType distanceTo(DenseIterator<const typename remove_const<C>::type,const typename remove_const<T>::type> other) const
    {
      assert(other.container_==container_);
      return other.position_ - position_;
    }

    DifferenceType distanceTo(DenseIterator<typename remove_const<C>::type, typename remove_const<T>::type> other) const
    {
      assert(other.container_==container_);
      return other.position_ - position_;
    }

    //! return index
    SizeType index () const
    {
      return this->position_;
    }

  private:
    C *container_;
    SizeType position_;
  };

  /** \brief Interface for a class of dense vectors over a given field.
   *
   * \tparam V implementation class of the vector
   * \tparam T value type
   * \tparam S size type
   *
   * V has to provide the following members:
   * @code
   * T &       _access (size_type);
   * const T & _access (size_type) const;
   * size_type _size   () const;
   * @endcode
   */
  template<typename V>
  class DenseVector
  {
    typedef DenseMatVecTraits<V> Traits;
    // typedef typename Traits::value_type K;

    // Curiously recurring template pattern
    V & asImp() { return static_cast<V&>(*this); }
    const V & asImp() const { return static_cast<const V&>(*this); }

    // prohibit copying
    DenseVector ( const DenseVector & );

  protected:
    // construction allowed to derived classes only
    DenseVector () {}

  public:
    //===== type definitions and constants

    //! type of derived vector class
    typedef typename Traits::derived_type derived_type;

    //! export the type representing the field
    typedef typename Traits::value_type value_type;

    //! export the type representing the field
    typedef typename Traits::value_type field_type;

    //! export the type representing the components
    typedef typename Traits::value_type block_type;

    //! The type used for the index access and size operation
    typedef typename Traits::size_type size_type;

    //! We are at the leaf of the block recursion
    enum {
      //! The number of block levels we contain
      blocklevel = 1
    };

    //===== assignment from scalar
    //! Assignment operator for scalar
    inline derived_type& operator= (const value_type& k)
    {
      for (size_type i=0; i<size(); i++)
        asImp()[i] = k;
      return asImp();
    }

    //===== access to components

    //! random access
    value_type & operator[] (size_type i)
    {
      return asImp().vec_access(i);
    }

    const value_type & operator[] (size_type i) const
    {
      return asImp().vec_access(i);
    }

    //! size method
    size_type size() const
    {
      return asImp().vec_size();
    }

    //! Iterator class for sequential access
    typedef DenseIterator<DenseVector,value_type> Iterator;
    //! typedef for stl compliant access
    typedef Iterator iterator;

    //! begin iterator
    Iterator begin ()
    {
      return Iterator(*this,0);
    }

    //! end iterator
    Iterator end ()
    {
      return Iterator(*this,size());
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector, i.e. at the last entry.
    Iterator beforeEnd ()
    {
      return Iterator(*this,size()-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    Iterator beforeBegin ()
    {
      return Iterator(*this,-1);
    }

    //! return iterator to given element or end()
    Iterator find (size_type i)
    {
      return Iterator(*this,std::min(i,size()));
    }

    //! ConstIterator class for sequential access
    typedef DenseIterator<const DenseVector,const value_type> ConstIterator;
    //! typedef for stl compliant access
    typedef ConstIterator const_iterator;

    //! begin ConstIterator
    ConstIterator begin () const
    {
      return ConstIterator(*this,0);
    }

    //! end ConstIterator
    ConstIterator end () const
    {
      return ConstIterator(*this,size());
    }

    //! @returns an iterator that is positioned before
    //! the end iterator of the vector. i.e. at the last element
    ConstIterator beforeEnd () const
    {
      return ConstIterator(*this,size()-1);
    }

    //! @returns an iterator that is positioned before
    //! the first entry of the vector.
    ConstIterator beforeBegin () const
    {
      return ConstIterator(*this,-1);
    }

    //! return iterator to given element or end()
    ConstIterator find (size_type i) const
    {
      return ConstIterator(*this,std::min(i,size()));
    }

    //===== vector space arithmetic

    //! vector space addition
    template <class Other>
    derived_type& operator+= (const DenseVector<Other>& y)
    {
      assert(y.size() == size());
      for (size_type i=0; i<size(); i++)
        (*this)[i] += y[i];
      return asImp();
    }

    //! vector space subtraction
    template <class Other>
    derived_type& operator-= (const DenseVector<Other>& y)
    {
      assert(y.size() == size());
      for (size_type i=0; i<size(); i++)
        (*this)[i] -= y[i];
      return asImp();
    }

    //! Binary vector addition
    template <class Other>
    derived_type operator+ (const DenseVector<Other>& b) const
    {
      derived_type z = asImp();
      return (z+=b);
    }

    //! Binary vector subtraction
    template <class Other>
    derived_type operator- (const DenseVector<Other>& b) const
    {
      derived_type z = asImp();
      return (z-=b);
    }

    //! \brief vector space add scalar to all comps
    /**
       we use enable_if to avoid an ambiguity, if the
       function parameter can be converted to value_type implicitly.
       (see FS#1457)

       The function is only enabled, if the parameter is directly
       convertible to value_type.
     */
    template <typename ValueType>
    typename std::enable_if<
      std::is_convertible<ValueType, value_type>::value,
      derived_type
    >::type&
    operator+= (const ValueType& kk)
    {
      const value_type& k = kk;
      for (size_type i=0; i<size(); i++)
        (*this)[i] += k;
      return asImp();
    }

    //! \brief vector space subtract scalar from all comps
    /**
       we use enable_if to avoid an ambiguity, if the
       function parameter can be converted to value_type implicitly.
       (see FS#1457)

       The function is only enabled, if the parameter is directly
       convertible to value_type.
     */
    template <typename ValueType>
    typename std::enable_if<
      std::is_convertible<ValueType, value_type>::value,
      derived_type
    >::type&
    operator-= (const ValueType& kk)
    {
      const value_type& k = kk;
      for (size_type i=0; i<size(); i++)
        (*this)[i] -= k;
      return asImp();
    }

    //! \brief vector space multiplication with scalar
    /**
       we use enable_if to avoid an ambiguity, if the
       function parameter can be converted to value_type implicitly.
       (see FS#1457)

       The function is only enabled, if the parameter is directly
       convertible to value_type.
     */
    template <typename ValueType>
    typename std::enable_if<
      std::is_convertible<ValueType, value_type>::value,
      derived_type
    >::type&
    operator*= (const ValueType& kk)
    {
      const value_type& k = kk;
      for (size_type i=0; i<size(); i++)
        (*this)[i] *= k;
      return asImp();
    }

    //! \brief vector space division by scalar
    /**
       we use enable_if to avoid an ambiguity, if the
       function parameter can be converted to value_type implicitly.
       (see FS#1457)

       The function is only enabled, if the parameter is directly
       convertible to value_type.
     */
    template <typename ValueType>
    typename std::enable_if<
      std::is_convertible<ValueType, value_type>::value,
      derived_type
    >::type&
    operator/= (const ValueType& kk)
    {
      const value_type& k = kk;
      for (size_type i=0; i<size(); i++)
        (*this)[i] /= k;
      return asImp();
    }

    //! Binary vector comparison
    template <class Other>
    bool operator== (const DenseVector<Other>& y) const
    {
      assert(y.size() == size());
      for (size_type i=0; i<size(); i++)
        if ((*this)[i]!=y[i])
          return false;

      return true;
    }

    //! Binary vector incomparison
    template <class Other>
    bool operator!= (const DenseVector<Other>& y) const
    {
      return !operator==(y);
    }


    //! vector space axpy operation ( *this += a y )
    template <class Other>
    derived_type& axpy (const value_type& a, const DenseVector<Other>& y)
    {
      assert(y.size() == size());
      for (size_type i=0; i<size(); i++)
        (*this)[i] += a*y[i];
      return asImp();
    }

    /**
     * \brief indefinite vector dot product \f$\left (x^T \cdot y \right)\f$ which corresponds to Petsc's VecTDot
     *
     * http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecTDot.html
     * @param y other vector
     * @return
     */
    template<class Other>
    typename PromotionTraits<field_type,typename DenseVector<Other>::field_type>::PromotedType operator* (const DenseVector<Other>& y) const {
      typedef typename PromotionTraits<field_type, typename DenseVector<Other>::field_type>::PromotedType PromotedType;
      PromotedType result(0);
      assert(y.size() == size());
      for (size_type i=0; i<size(); i++) {
        result += PromotedType((*this)[i]*y[i]);
      }
      return result;
    }

    /**
     * @brief vector dot product \f$\left (x^H \cdot y \right)\f$ which corresponds to Petsc's VecDot
     *
     * http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Vec/VecDot.html
     * @param y other vector
     * @return
     */
    template<class Other>
    typename PromotionTraits<field_type,typename DenseVector<Other>::field_type>::PromotedType dot(const DenseVector<Other>& y) const {
      typedef typename PromotionTraits<field_type, typename DenseVector<Other>::field_type>::PromotedType PromotedType;
      PromotedType result(0);
      assert(y.size() == size());
      for (size_type i=0; i<size(); i++) {
        result += Dune::dot((*this)[i],y[i]);
      }
      return result;
    }

    //===== norms

    //! one norm (sum over absolute values of entries)
    typename FieldTraits<value_type>::real_type one_norm() const {
      using std::abs;
      typename FieldTraits<value_type>::real_type result( 0 );
      for (size_type i=0; i<size(); i++)
        result += abs((*this)[i]);
      return result;
    }


    //! simplified one norm (uses Manhattan norm for complex values)
    typename FieldTraits<value_type>::real_type one_norm_real () const
    {
      typename FieldTraits<value_type>::real_type result( 0 );
      for (size_type i=0; i<size(); i++)
        result += fvmeta::absreal((*this)[i]);
      return result;
    }

    //! two norm sqrt(sum over squared values of entries)
    typename FieldTraits<value_type>::real_type two_norm () const
    {
      typename FieldTraits<value_type>::real_type result( 0 );
      for (size_type i=0; i<size(); i++)
        result += fvmeta::abs2((*this)[i]);
      return fvmeta::sqrt(result);
    }

    //! square of two norm (sum over squared values of entries), need for block recursion
    typename FieldTraits<value_type>::real_type two_norm2 () const
    {
      typename FieldTraits<value_type>::real_type result( 0 );
      for (size_type i=0; i<size(); i++)
        result += fvmeta::abs2((*this)[i]);
      return result;
    }

    //! infinity norm (maximum of absolute values of entries)
    typename FieldTraits<value_type>::real_type infinity_norm () const
    {
      using std::abs;
      using std::max;
      typedef typename FieldTraits<value_type>::real_type real_type;

      if (size() == 0)
        return 0.0;

      ConstIterator it = begin();
      real_type max_val = abs(*it);
      for (it = it + 1; it != end(); ++it)
        max_val = max(max_val, real_type(abs(*it)));

      return max_val;
    }

    //! simplified infinity norm (uses Manhattan norm for complex values)
    typename FieldTraits<value_type>::real_type infinity_norm_real () const
    {
      using std::max;

      if (size() == 0)
        return 0.0;

      ConstIterator it = begin();
      typename FieldTraits<value_type>::real_type max_val = fvmeta::absreal(*it);
      for (it = it + 1; it != end(); ++it)
        max_val = max(max_val, fvmeta::absreal(*it));

      return max_val;
    }

    //===== sizes

    //! number of blocks in the vector (are of size 1 here)
    size_type N () const
    {
      return size();
    }

    //! dimension of the vector space
    size_type dim () const
    {
      return size();
    }

  };

  /** \brief Write a DenseVector to an output stream
   *  \relates DenseVector
   *
   *  \param[in]  s  std :: ostream to write to
   *  \param[in]  v  DenseVector to write
   *
   *  \returns the output stream (s)
   */
  template<typename V>
  std::ostream& operator<< (std::ostream& s, const DenseVector<V>& v)
  {
    for (typename DenseVector<V>::size_type i=0; i<v.size(); i++)
      s << ((i>0) ? " " : "") << v[i];
    return s;
  }

  /** @} end documentation */

} // end namespace

#endif // DUNE_DENSEVECTOR_HH