/usr/include/dlib/timer/timer_heavy.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 | // Copyright (C) 2005 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_TIMER_KERNEl_1_
#define DLIB_TIMER_KERNEl_1_
#include "../threads.h"
#include "../algs.h"
#include "../misc_api.h"
#include "timer_abstract.h"
namespace dlib
{
template <
typename T
>
class timer_heavy
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an implementation of the timer_abstract.h interface. It is very
simple and uses only one thread which is always alive in a timer_heavy.
The reason this object exists is for historical reasons. Originally, the
dlib::timer was a multi-implementation component and the timer_heavy was
its first implementation. It was superseded later by the more efficient
dlib::timer. However, timer_heavy is still around so that
dlib::timer::kernel_1a has something to refer to. This way, old client
code which somehow depends on the same thread always calling a timer action
function isn't going to be disrupted.
INITIAL VALUE
- running == false
- delay == 1000
- ao == a pointer to the action_object()
- af == a pointer to the action_function()
- m == a mutex that locks everything in this class
- s == a signaler for mutex m
- stop_running == false
CONVENTION
- running && !stop_running == is_running()
- delay == delay_time()
- *ao == action_object()
- af == action_function()
- if (running) then
- there is a thread running
- if (is_running()) then
- next_time_to_run == the time when the next execution of the action
function should occurr. (the time is given by ts.get_timestamp())
- stop_running is used to tell the thread to quit. If it is
set to true then the thread should end.
!*/
public:
typedef void (T::*af_type)();
timer_heavy(
T& ao_,
af_type af_
);
virtual ~timer_heavy(
);
void clear(
);
af_type action_function (
) const;
const T& action_object (
) const;
T& action_object (
);
bool is_running (
) const;
unsigned long delay_time (
) const;
void set_delay_time (
unsigned long milliseconds
);
void start (
);
void stop (
);
void stop_and_wait (
);
private:
void thread (
);
/*!
requires
- is run in its own thread
ensures
- calls the action function for the given timer object in the manner
specified by timer_kernel_abstract.h
!*/
// data members
T& ao;
const af_type af;
unsigned long delay;
mutex m;
signaler s;
bool running;
bool stop_running;
timestamper ts;
uint64 next_time_to_run;
// restricted functions
timer_heavy(const timer_heavy<T>&); // copy constructor
timer_heavy<T>& operator=(const timer_heavy<T>&); // assignment operator
};
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// member function definitions
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename T
>
timer_heavy<T>::
timer_heavy(
T& ao_,
af_type af_
) :
ao(ao_),
af(af_),
delay(1000),
s(m),
running(false),
stop_running(false)
{
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
timer_heavy<T>::
~timer_heavy(
)
{
stop_and_wait();
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
void timer_heavy<T>::
clear(
)
{
m.lock();
stop_running = true;
delay = 1000;
s.broadcast();
m.unlock();
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
typename timer_heavy<T>::af_type timer_heavy<T>::
action_function (
) const
{
return af;
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
const T& timer_heavy<T>::
action_object (
) const
{
return ao;
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
T& timer_heavy<T>::
action_object (
)
{
return ao;
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
bool timer_heavy<T>::
is_running (
) const
{
auto_mutex M(m);
return running && !stop_running;
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
unsigned long timer_heavy<T>::
delay_time (
) const
{
auto_mutex M(m);
return delay;
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
void timer_heavy<T>::
set_delay_time (
unsigned long milliseconds
)
{
m.lock();
// if (is_running()) then we should adjust next_time_to_run
if (running && !stop_running)
{
next_time_to_run -= delay*1000;
next_time_to_run += milliseconds*1000;
}
delay = milliseconds;
s.broadcast();
m.unlock();
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
void timer_heavy<T>::
start (
)
{
auto_mutex M(m);
// if (is_running() == false) then reset the countdown to the next call
// to the action_function()
if ( (running && !stop_running) == false)
next_time_to_run = ts.get_timestamp() + delay*1000;
stop_running = false;
if (running == false)
{
running = true;
// start the thread
if (create_new_thread<timer_heavy,&timer_heavy::thread>(*this) == false)
{
running = false;
throw dlib::thread_error("error creating new thread in timer_heavy::start");
}
}
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
void timer_heavy<T>::
stop (
)
{
m.lock();
stop_running = true;
s.broadcast();
m.unlock();
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
void timer_heavy<T>::
thread (
)
{
auto_mutex M(m);
unsigned long delay_remaining;
uint64 current_time = ts.get_timestamp();
if (current_time < next_time_to_run)
delay_remaining = static_cast<unsigned long>((next_time_to_run-current_time)/1000);
else
delay_remaining = 0;
while (stop_running == false)
{
if (delay_remaining > 0)
s.wait_or_timeout(delay_remaining);
if (stop_running)
break;
current_time = ts.get_timestamp();
if (current_time < next_time_to_run)
{
// then we woke up too early so we should keep waiting
delay_remaining = static_cast<unsigned long>((next_time_to_run-current_time)/1000);
// rounding might make this be zero anyway. So if it is
// then we will say we have hit the next time to run.
if (delay_remaining > 0)
continue;
}
// call the action function
m.unlock();
(ao.*af)();
m.lock();
current_time = ts.get_timestamp();
next_time_to_run = current_time + delay*1000;
delay_remaining = delay;
}
running = false;
stop_running = false;
s.broadcast();
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
void timer_heavy<T>::
stop_and_wait (
)
{
m.lock();
if (running)
{
// make the running thread terminate
stop_running = true;
s.broadcast();
// wait for the thread to quit
while (running)
s.wait();
}
m.unlock();
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_TIMER_KERNEl_1_
|