This file is indexed.

/usr/include/dlib/svm/svm_threaded.h is in libdlib-dev 18.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SVm_THREADED_
#define DLIB_SVm_THREADED_

#include "svm_threaded_abstract.h"
#include "svm.h"
#include <cmath>
#include <limits>
#include <sstream>
#include "../matrix.h"
#include "../algs.h"
#include "../serialize.h"
#include "function.h"
#include "kernel.h"
#include "../threads.h"
#include <vector>
#include "../smart_pointers.h"
#include "../pipe.h"
#include <iostream>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    namespace cvtti_helpers
    {
        template <typename trainer_type, typename in_sample_vector_type>
        struct job
        {
            typedef typename trainer_type::scalar_type scalar_type;
            typedef typename trainer_type::sample_type sample_type;
            typedef typename trainer_type::mem_manager_type mem_manager_type;
            typedef matrix<sample_type,0,1,mem_manager_type> sample_vector_type;
            typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;

            job() : x(0) {}

            trainer_type trainer;
            matrix<long,0,1> x_test, x_train;
            scalar_vector_type y_test, y_train;
            const in_sample_vector_type* x;
        };

        struct task  
        {
            template <
                typename trainer_type,
                typename matrix_type,
                typename in_sample_vector_type
                >
            void operator()(
                job<trainer_type,in_sample_vector_type>& j,
                matrix_type& result
            )
            {
                try
                {
                    result = test_binary_decision_function(j.trainer.train(rowm(*j.x,j.x_train), j.y_train), rowm(*j.x,j.x_test), j.y_test);

                    // Do this just to make j release it's memory since people might run threaded cross validation
                    // on very large datasets.  Every bit of freed memory helps out.
                    j = job<trainer_type,in_sample_vector_type>();
                }
                catch (invalid_nu_error&)
                {
                    // If this is a svm_nu_trainer then we might get this exception if the nu is
                    // invalid.  In this case just return a cross validation score of 0.
                    result = 0;
                }
                catch (std::bad_alloc&)
                {
                    std::cerr << "\nstd::bad_alloc thrown while running cross_validate_trainer_threaded().  Not enough memory.\n" << std::endl;
                    throw;
                }
            }
        };
    }

    template <
        typename trainer_type,
        typename in_sample_vector_type,
        typename in_scalar_vector_type
        >
    const matrix<typename trainer_type::scalar_type, 1, 2, typename trainer_type::mem_manager_type> 
    cross_validate_trainer_threaded_impl (
        const trainer_type& trainer,
        const in_sample_vector_type& x,
        const in_scalar_vector_type& y,
        const long folds,
        const long num_threads
    )
    {
        using namespace dlib::cvtti_helpers;
        typedef typename trainer_type::scalar_type scalar_type;
        typedef typename trainer_type::mem_manager_type mem_manager_type;

        // make sure requires clause is not broken
        DLIB_ASSERT(is_binary_classification_problem(x,y) == true &&
                    1 < folds && folds <= std::min(sum(y>0),sum(y<0)) &&
                    num_threads > 0,
            "\tmatrix cross_validate_trainer()"
            << "\n\t invalid inputs were given to this function"
            << "\n\t std::min(sum(y>0),sum(y<0)): " << std::min(sum(y>0),sum(y<0))
            << "\n\t folds:  " << folds 
            << "\n\t num_threads:  " << num_threads 
            << "\n\t is_binary_classification_problem(x,y): " << ((is_binary_classification_problem(x,y))? "true":"false")
            );


        task mytask;
        thread_pool tp(num_threads);


        // count the number of positive and negative examples
        long num_pos = 0;
        long num_neg = 0;
        for (long r = 0; r < y.nr(); ++r)
        {
            if (y(r) == +1.0)
                ++num_pos;
            else
                ++num_neg;
        }

        // figure out how many positive and negative examples we will have in each fold
        const long num_pos_test_samples = num_pos/folds; 
        const long num_pos_train_samples = num_pos - num_pos_test_samples; 
        const long num_neg_test_samples = num_neg/folds; 
        const long num_neg_train_samples = num_neg - num_neg_test_samples; 


        long pos_idx = 0;
        long neg_idx = 0;



        std::vector<future<job<trainer_type,in_sample_vector_type> > > jobs(folds);
        std::vector<future<matrix<scalar_type, 1, 2, mem_manager_type> > > results(folds);


        for (long i = 0; i < folds; ++i)
        {
            job<trainer_type,in_sample_vector_type>& j = jobs[i].get();

            j.x = &x;
            j.x_test.set_size (num_pos_test_samples  + num_neg_test_samples);
            j.y_test.set_size (num_pos_test_samples  + num_neg_test_samples);
            j.x_train.set_size(num_pos_train_samples + num_neg_train_samples);
            j.y_train.set_size(num_pos_train_samples + num_neg_train_samples);
            j.trainer = trainer;

            long cur = 0;

            // load up our positive test samples
            while (cur < num_pos_test_samples)
            {
                if (y(pos_idx) == +1.0)
                {
                    j.x_test(cur) = pos_idx;
                    j.y_test(cur) = +1.0;
                    ++cur;
                }
                pos_idx = (pos_idx+1)%x.nr();
            }

            // load up our negative test samples
            while (cur < j.x_test.nr())
            {
                if (y(neg_idx) == -1.0)
                {
                    j.x_test(cur) = neg_idx;
                    j.y_test(cur) = -1.0;
                    ++cur;
                }
                neg_idx = (neg_idx+1)%x.nr();
            }

            // load the training data from the data following whatever we loaded
            // as the testing data
            long train_pos_idx = pos_idx;
            long train_neg_idx = neg_idx;
            cur = 0;

            // load up our positive train samples
            while (cur < num_pos_train_samples)
            {
                if (y(train_pos_idx) == +1.0)
                {
                    j.x_train(cur) = train_pos_idx;
                    j.y_train(cur) = +1.0;
                    ++cur;
                }
                train_pos_idx = (train_pos_idx+1)%x.nr();
            }

            // load up our negative train samples
            while (cur < j.x_train.nr())
            {
                if (y(train_neg_idx) == -1.0)
                {
                    j.x_train(cur) = train_neg_idx;
                    j.y_train(cur) = -1.0;
                    ++cur;
                }
                train_neg_idx = (train_neg_idx+1)%x.nr();
            }

            // finally spawn a task to process this job
            tp.add_task(mytask, jobs[i], results[i]);

        } // for (long i = 0; i < folds; ++i)

        matrix<scalar_type, 1, 2, mem_manager_type> res;
        set_all_elements(res,0);

        // now compute the total results
        for (long i = 0; i < folds; ++i)
        {
            res += results[i].get();
        }

        return res/(scalar_type)folds;
    }

    template <
        typename trainer_type,
        typename in_sample_vector_type,
        typename in_scalar_vector_type
        >
    const matrix<typename trainer_type::scalar_type, 1, 2, typename trainer_type::mem_manager_type> 
    cross_validate_trainer_threaded (
        const trainer_type& trainer,
        const in_sample_vector_type& x,
        const in_scalar_vector_type& y,
        const long folds,
        const long num_threads
    )
    {
        return cross_validate_trainer_threaded_impl(trainer,
                                           mat(x),
                                           mat(y),
                                           folds,
                                           num_threads);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SVm_THREADED_