/usr/include/dlib/svm/svm_threaded.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SVm_THREADED_
#define DLIB_SVm_THREADED_
#include "svm_threaded_abstract.h"
#include "svm.h"
#include <cmath>
#include <limits>
#include <sstream>
#include "../matrix.h"
#include "../algs.h"
#include "../serialize.h"
#include "function.h"
#include "kernel.h"
#include "../threads.h"
#include <vector>
#include "../smart_pointers.h"
#include "../pipe.h"
#include <iostream>
namespace dlib
{
// ----------------------------------------------------------------------------------------
namespace cvtti_helpers
{
template <typename trainer_type, typename in_sample_vector_type>
struct job
{
typedef typename trainer_type::scalar_type scalar_type;
typedef typename trainer_type::sample_type sample_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
typedef matrix<sample_type,0,1,mem_manager_type> sample_vector_type;
typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
job() : x(0) {}
trainer_type trainer;
matrix<long,0,1> x_test, x_train;
scalar_vector_type y_test, y_train;
const in_sample_vector_type* x;
};
struct task
{
template <
typename trainer_type,
typename matrix_type,
typename in_sample_vector_type
>
void operator()(
job<trainer_type,in_sample_vector_type>& j,
matrix_type& result
)
{
try
{
result = test_binary_decision_function(j.trainer.train(rowm(*j.x,j.x_train), j.y_train), rowm(*j.x,j.x_test), j.y_test);
// Do this just to make j release it's memory since people might run threaded cross validation
// on very large datasets. Every bit of freed memory helps out.
j = job<trainer_type,in_sample_vector_type>();
}
catch (invalid_nu_error&)
{
// If this is a svm_nu_trainer then we might get this exception if the nu is
// invalid. In this case just return a cross validation score of 0.
result = 0;
}
catch (std::bad_alloc&)
{
std::cerr << "\nstd::bad_alloc thrown while running cross_validate_trainer_threaded(). Not enough memory.\n" << std::endl;
throw;
}
}
};
}
template <
typename trainer_type,
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const matrix<typename trainer_type::scalar_type, 1, 2, typename trainer_type::mem_manager_type>
cross_validate_trainer_threaded_impl (
const trainer_type& trainer,
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
const long folds,
const long num_threads
)
{
using namespace dlib::cvtti_helpers;
typedef typename trainer_type::scalar_type scalar_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(x,y) == true &&
1 < folds && folds <= std::min(sum(y>0),sum(y<0)) &&
num_threads > 0,
"\tmatrix cross_validate_trainer()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t std::min(sum(y>0),sum(y<0)): " << std::min(sum(y>0),sum(y<0))
<< "\n\t folds: " << folds
<< "\n\t num_threads: " << num_threads
<< "\n\t is_binary_classification_problem(x,y): " << ((is_binary_classification_problem(x,y))? "true":"false")
);
task mytask;
thread_pool tp(num_threads);
// count the number of positive and negative examples
long num_pos = 0;
long num_neg = 0;
for (long r = 0; r < y.nr(); ++r)
{
if (y(r) == +1.0)
++num_pos;
else
++num_neg;
}
// figure out how many positive and negative examples we will have in each fold
const long num_pos_test_samples = num_pos/folds;
const long num_pos_train_samples = num_pos - num_pos_test_samples;
const long num_neg_test_samples = num_neg/folds;
const long num_neg_train_samples = num_neg - num_neg_test_samples;
long pos_idx = 0;
long neg_idx = 0;
std::vector<future<job<trainer_type,in_sample_vector_type> > > jobs(folds);
std::vector<future<matrix<scalar_type, 1, 2, mem_manager_type> > > results(folds);
for (long i = 0; i < folds; ++i)
{
job<trainer_type,in_sample_vector_type>& j = jobs[i].get();
j.x = &x;
j.x_test.set_size (num_pos_test_samples + num_neg_test_samples);
j.y_test.set_size (num_pos_test_samples + num_neg_test_samples);
j.x_train.set_size(num_pos_train_samples + num_neg_train_samples);
j.y_train.set_size(num_pos_train_samples + num_neg_train_samples);
j.trainer = trainer;
long cur = 0;
// load up our positive test samples
while (cur < num_pos_test_samples)
{
if (y(pos_idx) == +1.0)
{
j.x_test(cur) = pos_idx;
j.y_test(cur) = +1.0;
++cur;
}
pos_idx = (pos_idx+1)%x.nr();
}
// load up our negative test samples
while (cur < j.x_test.nr())
{
if (y(neg_idx) == -1.0)
{
j.x_test(cur) = neg_idx;
j.y_test(cur) = -1.0;
++cur;
}
neg_idx = (neg_idx+1)%x.nr();
}
// load the training data from the data following whatever we loaded
// as the testing data
long train_pos_idx = pos_idx;
long train_neg_idx = neg_idx;
cur = 0;
// load up our positive train samples
while (cur < num_pos_train_samples)
{
if (y(train_pos_idx) == +1.0)
{
j.x_train(cur) = train_pos_idx;
j.y_train(cur) = +1.0;
++cur;
}
train_pos_idx = (train_pos_idx+1)%x.nr();
}
// load up our negative train samples
while (cur < j.x_train.nr())
{
if (y(train_neg_idx) == -1.0)
{
j.x_train(cur) = train_neg_idx;
j.y_train(cur) = -1.0;
++cur;
}
train_neg_idx = (train_neg_idx+1)%x.nr();
}
// finally spawn a task to process this job
tp.add_task(mytask, jobs[i], results[i]);
} // for (long i = 0; i < folds; ++i)
matrix<scalar_type, 1, 2, mem_manager_type> res;
set_all_elements(res,0);
// now compute the total results
for (long i = 0; i < folds; ++i)
{
res += results[i].get();
}
return res/(scalar_type)folds;
}
template <
typename trainer_type,
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const matrix<typename trainer_type::scalar_type, 1, 2, typename trainer_type::mem_manager_type>
cross_validate_trainer_threaded (
const trainer_type& trainer,
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
const long folds,
const long num_threads
)
{
return cross_validate_trainer_threaded_impl(trainer,
mat(x),
mat(y),
folds,
num_threads);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SVm_THREADED_
|