/usr/include/dlib/svm/svm.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 | // Copyright (C) 2007 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SVm_
#define DLIB_SVm_
#include "svm_abstract.h"
#include <cmath>
#include <limits>
#include <sstream>
#include "../matrix.h"
#include "../algs.h"
#include "../serialize.h"
#include "../rand.h"
#include "../std_allocator.h"
#include "function.h"
#include "kernel.h"
#include "../enable_if.h"
#include "../optimization.h"
#include "svm_nu_trainer.h"
#include <vector>
#include <set>
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U
>
inline bool is_learning_problem_impl (
const T& x,
const U& x_labels
)
{
return is_col_vector(x) &&
is_col_vector(x_labels) &&
x.size() == x_labels.size() &&
x.size() > 0;
}
template <
typename T,
typename U
>
inline bool is_learning_problem (
const T& x,
const U& x_labels
)
{
return is_learning_problem_impl(mat(x), mat(x_labels));
}
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U
>
bool is_binary_classification_problem_impl (
const T& x,
const U& x_labels
)
{
bool seen_neg_class = false;
bool seen_pos_class = false;
if (is_learning_problem_impl(x,x_labels) == false)
return false;
if (x.size() <= 1) return false;
for (long r = 0; r < x_labels.nr(); ++r)
{
if (x_labels(r) != -1 && x_labels(r) != 1)
return false;
if (x_labels(r) == 1)
seen_pos_class = true;
if (x_labels(r) == -1)
seen_neg_class = true;
}
return seen_pos_class && seen_neg_class;
}
template <
typename T,
typename U
>
bool is_binary_classification_problem (
const T& x,
const U& x_labels
)
{
return is_binary_classification_problem_impl(mat(x), mat(x_labels));
}
// ----------------------------------------------------------------------------------------
template <
typename dec_funct_type,
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const matrix<double,1,2> test_binary_decision_function_impl (
const dec_funct_type& dec_funct,
const in_sample_vector_type& x_test,
const in_scalar_vector_type& y_test
)
{
// make sure requires clause is not broken
DLIB_ASSERT( is_binary_classification_problem(x_test,y_test) == true,
"\tmatrix test_binary_decision_function()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t is_binary_classification_problem(x_test,y_test): "
<< ((is_binary_classification_problem(x_test,y_test))? "true":"false"));
// count the number of positive and negative examples
long num_pos = 0;
long num_neg = 0;
long num_pos_correct = 0;
long num_neg_correct = 0;
// now test this trained object
for (long i = 0; i < x_test.nr(); ++i)
{
// if this is a positive example
if (y_test(i) == +1.0)
{
++num_pos;
if (dec_funct(x_test(i)) >= 0)
++num_pos_correct;
}
else if (y_test(i) == -1.0)
{
++num_neg;
if (dec_funct(x_test(i)) < 0)
++num_neg_correct;
}
else
{
throw dlib::error("invalid input labels to the test_binary_decision_function() function");
}
}
matrix<double, 1, 2> res;
res(0) = (double)num_pos_correct/(double)(num_pos);
res(1) = (double)num_neg_correct/(double)(num_neg);
return res;
}
template <
typename dec_funct_type,
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const matrix<double,1,2> test_binary_decision_function (
const dec_funct_type& dec_funct,
const in_sample_vector_type& x_test,
const in_scalar_vector_type& y_test
)
{
return test_binary_decision_function_impl(dec_funct,
mat(x_test),
mat(y_test));
}
// ----------------------------------------------------------------------------------------
template <
typename sequence_type
>
bool is_sequence_labeling_problem (
const std::vector<sequence_type>& samples,
const std::vector<std::vector<unsigned long> >& labels
)
{
if (is_learning_problem(samples, labels))
{
for (unsigned long i = 0; i < samples.size(); ++i)
{
if (samples[i].size() != labels[i].size())
return false;
}
return true;
}
return false;
}
// ----------------------------------------------------------------------------------------
template <
typename sequence_type
>
bool is_sequence_segmentation_problem (
const std::vector<sequence_type>& samples,
const std::vector<std::vector<std::pair<unsigned long,unsigned long> > >& segments
)
{
if (is_learning_problem(samples, segments))
{
for (unsigned long i = 0; i < samples.size(); ++i)
{
// Make sure the segments are inside samples[i] and don't overlap with each
// other.
std::vector<bool> hits(samples[i].size(), false);
for (unsigned long j = 0; j < segments[i].size(); ++j)
{
const unsigned long begin = segments[i][j].first;
const unsigned long end = segments[i][j].second;
// if the segment is outside the sequence
if (end > samples[i].size())
return false;
if (begin >= end)
return false;
// check for overlap
for (unsigned long k = begin; k < end; ++k)
{
if (hits[k])
return false;
hits[k] = true;
}
}
}
return true;
}
return false;
}
// ----------------------------------------------------------------------------------------
template <
typename lhs_type,
typename rhs_type
>
bool is_assignment_problem (
const std::vector<std::pair<std::vector<lhs_type>, std::vector<rhs_type> > >& samples,
const std::vector<std::vector<long> >& labels
)
{
std::vector<bool> seen_label;
if (is_learning_problem(samples, labels))
{
for (unsigned long i = 0; i < samples.size(); ++i)
{
if (samples[i].first.size() != labels[i].size())
return false;
seen_label.assign(samples[i].second.size(), false);
for (unsigned long j = 0; j < labels[i].size(); ++j)
{
if (!(-1 <= labels[i][j] && labels[i][j] < (long)samples[i].second.size()))
return false;
if (labels[i][j] != -1)
{
// check label uniqueness
if (seen_label[labels[i][j]])
return false;
seen_label[labels[i][j]] = true;
}
}
}
return true;
}
return false;
}
// ----------------------------------------------------------------------------------------
template <
typename lhs_type,
typename rhs_type
>
bool is_forced_assignment_problem (
const std::vector<std::pair<std::vector<lhs_type>, std::vector<rhs_type> > >& samples,
const std::vector<std::vector<long> >& labels
)
{
if (is_assignment_problem(samples, labels))
{
for (unsigned long i = 0; i < samples.size(); ++i)
{
const unsigned long N = sum(mat(labels[i]) != -1);
if (std::min(samples[i].first.size(), samples[i].second.size()) != N)
return false;
}
return true;
}
return false;
}
// ----------------------------------------------------------------------------------------
template <
typename detection_type_,
typename label_type_ = long
>
struct labeled_detection
{
typedef detection_type_ detection_type;
typedef label_type_ label_type;
detection_type det;
label_type label;
};
template <
typename detection_type_,
typename label_type_
>
inline void serialize ( const labeled_detection<detection_type_,label_type_>& item, std::ostream& out)
{
serialize(item.det, out);
serialize(item.label, out);
}
template <
typename detection_type_,
typename label_type_
>
inline void deserialize (labeled_detection<detection_type_,label_type_>& item, std::istream& in)
{
deserialize(item.det, in);
deserialize(item.label, in);
}
// ----------------------------------------------------------------------------------------
template <
typename detection_type,
typename label_type
>
bool is_track_association_problem (
const std::vector<std::vector<labeled_detection<detection_type,label_type> > >& samples
)
{
if (samples.size() == 0)
return false;
unsigned long num_nonzero_elements = 0;
for (unsigned long i = 0; i < samples.size(); ++i)
{
if (samples.size() > 0)
++num_nonzero_elements;
}
if (num_nonzero_elements < 2)
return false;
// now make sure the label_type values are unique within each time step.
for (unsigned long i = 0; i < samples.size(); ++i)
{
std::set<label_type> vals;
for (unsigned long j = 0; j < samples[i].size(); ++j)
vals.insert(samples[i][j].label);
if (vals.size() != samples[i].size())
return false;
}
// passed all tests so it's good
return true;
}
// ----------------------------------------------------------------------------------------
template <
typename detection_type,
typename label_type
>
bool is_track_association_problem (
const std::vector<std::vector<std::vector<labeled_detection<detection_type,label_type> > > >& samples
)
{
for (unsigned long i = 0; i < samples.size(); ++i)
{
if (!is_track_association_problem(samples[i]))
return false;
}
// passed all tests so it's good
return true;
}
// ----------------------------------------------------------------------------------------
template <
typename trainer_type,
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const matrix<double, 1, 2, typename trainer_type::mem_manager_type>
cross_validate_trainer_impl (
const trainer_type& trainer,
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
const long folds
)
{
typedef typename in_scalar_vector_type::value_type scalar_type;
typedef typename trainer_type::mem_manager_type mem_manager_type;
typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(x,y) == true &&
1 < folds && folds <= std::min(sum(y>0),sum(y<0)),
"\tmatrix cross_validate_trainer()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t std::min(sum(y>0),sum(y<0)): " << std::min(sum(y>0),sum(y<0))
<< "\n\t folds: " << folds
<< "\n\t is_binary_classification_problem(x,y): " << ((is_binary_classification_problem(x,y))? "true":"false")
);
// count the number of positive and negative examples
long num_pos = 0;
long num_neg = 0;
for (long r = 0; r < y.nr(); ++r)
{
if (y(r) == +1.0)
++num_pos;
else
++num_neg;
}
// figure out how many positive and negative examples we will have in each fold
const long num_pos_test_samples = num_pos/folds;
const long num_pos_train_samples = num_pos - num_pos_test_samples;
const long num_neg_test_samples = num_neg/folds;
const long num_neg_train_samples = num_neg - num_neg_test_samples;
matrix<long,0,1> x_test, x_train;
scalar_vector_type y_test, y_train;
x_test.set_size (num_pos_test_samples + num_neg_test_samples);
y_test.set_size (num_pos_test_samples + num_neg_test_samples);
x_train.set_size(num_pos_train_samples + num_neg_train_samples);
y_train.set_size(num_pos_train_samples + num_neg_train_samples);
long pos_idx = 0;
long neg_idx = 0;
matrix<double, 1, 2, mem_manager_type> res;
set_all_elements(res,0);
for (long i = 0; i < folds; ++i)
{
long cur = 0;
// load up our positive test samples
while (cur < num_pos_test_samples)
{
if (y(pos_idx) == +1.0)
{
x_test(cur) = pos_idx;
y_test(cur) = +1.0;
++cur;
}
pos_idx = (pos_idx+1)%x.nr();
}
// load up our negative test samples
while (cur < x_test.nr())
{
if (y(neg_idx) == -1.0)
{
x_test(cur) = neg_idx;
y_test(cur) = -1.0;
++cur;
}
neg_idx = (neg_idx+1)%x.nr();
}
// load the training data from the data following whatever we loaded
// as the testing data
long train_pos_idx = pos_idx;
long train_neg_idx = neg_idx;
cur = 0;
// load up our positive train samples
while (cur < num_pos_train_samples)
{
if (y(train_pos_idx) == +1.0)
{
x_train(cur) = train_pos_idx;
y_train(cur) = +1.0;
++cur;
}
train_pos_idx = (train_pos_idx+1)%x.nr();
}
// load up our negative train samples
while (cur < x_train.nr())
{
if (y(train_neg_idx) == -1.0)
{
x_train(cur) = train_neg_idx;
y_train(cur) = -1.0;
++cur;
}
train_neg_idx = (train_neg_idx+1)%x.nr();
}
try
{
// do the training and testing
res += test_binary_decision_function(trainer.train(rowm(x,x_train),y_train),rowm(x,x_test),y_test);
}
catch (invalid_nu_error&)
{
// Just ignore the error in this case since we are going to
// interpret an invalid nu value the same as generating a decision
// function that miss-classifies everything.
}
} // for (long i = 0; i < folds; ++i)
return res/(double)folds;
}
template <
typename trainer_type,
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const matrix<double, 1, 2, typename trainer_type::mem_manager_type>
cross_validate_trainer (
const trainer_type& trainer,
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
const long folds
)
{
return cross_validate_trainer_impl(trainer,
mat(x),
mat(y),
folds);
}
// ----------------------------------------------------------------------------------------
namespace prob_impl
{
template <typename vect_type>
struct objective
{
objective (
const vect_type& f_,
const vect_type& t_
) : f(f_), t(t_) {}
double operator() (
const matrix<double,2,1>& x
) const
{
const double A = x(0);
const double B = x(1);
double res = 0;
for (unsigned long i = 0; i < f.size(); ++i)
{
const double val = A*f[i]+B;
// See the paper "A Note on Platt's Probabilistic Outputs for Support Vector Machines"
// for an explanation of why this code looks the way it does (rather than being the
// obvious formula).
if (val < 0)
res += (t[i] - 1)*val + std::log(1 + std::exp(val));
else
res += t[i]*val + std::log(1 + std::exp(-val));
}
return res;
}
const vect_type& f;
const vect_type& t;
};
template <typename vect_type>
struct der
{
der (
const vect_type& f_,
const vect_type& t_
) : f(f_), t(t_) {}
matrix<double,2,1> operator() (
const matrix<double,2,1>& x
) const
{
const double A = x(0);
const double B = x(1);
double derA = 0;
double derB = 0;
for (unsigned long i = 0; i < f.size(); ++i)
{
const double val = A*f[i]+B;
double p;
// compute p = 1/(1+exp(val))
// but do so in a way that avoids numerical overflow.
if (val < 0)
p = 1.0/(1 + std::exp(val));
else
p = std::exp(-val)/(1 + std::exp(-val));
derA += f[i]*(t[i] - p);
derB += (t[i] - p);
}
matrix<double,2,1> res;
res = derA, derB;
return res;
}
const vect_type& f;
const vect_type& t;
};
template <typename vect_type>
struct hessian
{
hessian (
const vect_type& f_,
const vect_type& t_
) : f(f_), t(t_) {}
matrix<double,2,2> operator() (
const matrix<double,2,1>& x
) const
{
const double A = x(0);
const double B = x(1);
matrix<double,2,2> h;
h = 0;
for (unsigned long i = 0; i < f.size(); ++i)
{
const double val = A*f[i]+B;
// compute pp = 1/(1+exp(val)) and
// compute pn = 1 - pp
// but do so in a way that avoids numerical overflow and catastrophic cancellation.
double pp, pn;
if (val < 0)
{
const double temp = std::exp(val);
pp = 1.0/(1 + temp);
pn = temp*pp;
}
else
{
const double temp = std::exp(-val);
pn = 1.0/(1 + temp);
pp = temp*pn;
}
h(0,0) += f[i]*f[i]*pp*pn;
const double temp2 = f[i]*pp*pn;
h(0,1) += temp2;
h(1,0) += temp2;
h(1,1) += pp*pn;
}
return h;
}
const vect_type& f;
const vect_type& t;
};
}
// ----------------------------------------------------------------------------------------
inline double platt_scale (
const std::pair<double,double>& params,
const double score
)
{
return 1/(1 + std::exp(params.first*score + params.second));
}
// ----------------------------------------------------------------------------------------
template <typename T, typename alloc>
std::pair<double,double> learn_platt_scaling (
const std::vector<T,alloc>& scores,
const std::vector<T,alloc>& labels
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(scores,labels) == true,
"\t std::pair<T,T> learn_platt_scaling()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t scores.size(): " << scores.size()
<< "\n\t labels.size(): " << labels.size()
<< "\n\t is_binary_classification_problem(scores,labels): " << is_binary_classification_problem(scores,labels)
);
const T num_pos = sum(mat(labels)>0);
const T num_neg = sum(mat(labels)<0);
const T hi_target = (num_pos+1)/(num_pos+2);
const T lo_target = 1.0/(num_neg+2);
std::vector<T,alloc> target;
for (unsigned long i = 0; i < labels.size(); ++i)
{
// if this was a positive example
if (labels[i] == +1.0)
{
target.push_back(hi_target);
}
else if (labels[i] == -1.0)
{
target.push_back(lo_target);
}
else
{
throw dlib::error("invalid input labels to the learn_platt_scaling() function.");
}
}
// Now find the maximum likelihood parameters of the sigmoid.
prob_impl::objective<std::vector<T,alloc> > obj(scores, target);
prob_impl::der<std::vector<T,alloc> > obj_der(scores, target);
prob_impl::hessian<std::vector<T,alloc> > obj_hessian(scores, target);
matrix<double,2,1> val;
val = 0;
find_min(newton_search_strategy(obj_hessian),
objective_delta_stop_strategy(),
obj,
obj_der,
val,
0);
const double A = val(0);
const double B = val(1);
return std::make_pair(A,B);
}
// ----------------------------------------------------------------------------------------
template <
typename trainer_type,
typename sample_vector_type,
typename label_vector_type
>
const probabilistic_function<typename trainer_type::trained_function_type>
train_probabilistic_decision_function (
const trainer_type& trainer,
const sample_vector_type& x,
const label_vector_type& y,
const long folds
)
{
typedef typename sample_vector_type::value_type sample_type;
typedef typename label_vector_type::value_type scalar_type;
/*
This function fits a sigmoid function to the output of the
svm trained by svm_nu_trainer or a similar trainer. The
technique used is the one described in the papers:
Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods by
John C. Platt. March 26, 1999
A Note on Platt's Probabilistic Outputs for Support Vector Machines
by Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng
*/
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(x,y) == true &&
1 < folds && folds <= (long)x.size(),
"\tprobabilistic_decision_function train_probabilistic_decision_function()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t x.size(): " << x.size()
<< "\n\t y.size(): " << y.size()
<< "\n\t folds: " << folds
<< "\n\t is_binary_classification_problem(x,y): " << is_binary_classification_problem(x,y)
);
// count the number of positive and negative examples
const long num_pos = (long)sum(mat(y) > 0);
const long num_neg = (long)sum(mat(y) < 0);
// figure out how many positive and negative examples we will have in each fold
const long num_pos_test_samples = num_pos/folds;
const long num_pos_train_samples = num_pos - num_pos_test_samples;
const long num_neg_test_samples = num_neg/folds;
const long num_neg_train_samples = num_neg - num_neg_test_samples;
typename trainer_type::trained_function_type d;
std::vector<sample_type> x_test, x_train;
std::vector<scalar_type> y_test, y_train;
x_test.resize (num_pos_test_samples + num_neg_test_samples);
y_test.resize (num_pos_test_samples + num_neg_test_samples);
x_train.resize(num_pos_train_samples + num_neg_train_samples);
y_train.resize(num_pos_train_samples + num_neg_train_samples);
std::vector<scalar_type> out, out_label;
long pos_idx = 0;
long neg_idx = 0;
for (long i = 0; i < folds; ++i)
{
long cur = 0;
// load up our positive test samples
while (cur < num_pos_test_samples)
{
if (y[pos_idx] == +1.0)
{
x_test[cur] = x[pos_idx];
y_test[cur] = +1.0;
++cur;
}
pos_idx = (pos_idx+1)%x.size();
}
// load up our negative test samples
while (cur < (long)x_test.size())
{
if (y[neg_idx] == -1.0)
{
x_test[cur] = x[neg_idx];
y_test[cur] = -1.0;
++cur;
}
neg_idx = (neg_idx+1)%x.size();
}
// load the training data from the data following whatever we loaded
// as the testing data
long train_pos_idx = pos_idx;
long train_neg_idx = neg_idx;
cur = 0;
// load up our positive train samples
while (cur < num_pos_train_samples)
{
if (y[train_pos_idx] == +1.0)
{
x_train[cur] = x[train_pos_idx];
y_train[cur] = +1.0;
++cur;
}
train_pos_idx = (train_pos_idx+1)%x.size();
}
// load up our negative train samples
while (cur < (long)x_train.size())
{
if (y[train_neg_idx] == -1.0)
{
x_train[cur] = x[train_neg_idx];
y_train[cur] = -1.0;
++cur;
}
train_neg_idx = (train_neg_idx+1)%x.size();
}
// do the training
d = trainer.train (x_train,y_train);
// now test this fold
for (unsigned long i = 0; i < x_test.size(); ++i)
{
out.push_back(d(x_test[i]));
out_label.push_back(y_test[i]);
}
} // for (long i = 0; i < folds; ++i)
std::pair<double,double> params = learn_platt_scaling(out, out_label);
const double A = params.first;
const double B = params.second;
return probabilistic_function<typename trainer_type::trained_function_type>( A, B, trainer.train(x,y) );
}
// ----------------------------------------------------------------------------------------
template <typename trainer_type>
struct trainer_adapter_probabilistic
{
typedef probabilistic_function<typename trainer_type::trained_function_type> trained_function_type;
const trainer_type trainer;
const long folds;
trainer_adapter_probabilistic (
const trainer_type& trainer_,
const long folds_
) : trainer(trainer_),folds(folds_) {}
template <
typename T,
typename U
>
const trained_function_type train (
const T& samples,
const U& labels
) const
{
return train_probabilistic_decision_function(trainer, samples, labels, folds);
}
};
template <
typename trainer_type
>
trainer_adapter_probabilistic<trainer_type> probabilistic (
const trainer_type& trainer,
const long folds
)
{
return trainer_adapter_probabilistic<trainer_type>(trainer,folds);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U,
typename V,
typename rand_type
>
typename enable_if<is_matrix<T>,void>::type randomize_samples (
T& t,
U& u,
V& v,
rand_type& r
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_vector(t) && is_vector(u) && is_vector(v) && u.size() == t.size() &&
u.size() == v.size(),
"\t randomize_samples(t,u,v)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t t.size(): " << t.size()
<< "\n\t u.size(): " << u.size()
<< "\n\t v.size(): " << v.size()
<< "\n\t is_vector(t): " << is_vector(t)
<< "\n\t is_vector(u): " << is_vector(u)
<< "\n\t is_vector(v): " << is_vector(v)
);
long n = t.size()-1;
while (n > 0)
{
// pick a random index to swap into t[n]
const unsigned long idx = r.get_random_32bit_number()%(n+1);
// swap our randomly selected index into the n position
exchange(t(idx), t(n));
exchange(u(idx), u(n));
exchange(v(idx), v(n));
--n;
}
}
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U,
typename V,
typename rand_type
>
typename disable_if<is_matrix<T>,void>::type randomize_samples (
T& t,
U& u,
V& v,
rand_type& r
)
{
// make sure requires clause is not broken
DLIB_ASSERT(u.size() == t.size() && u.size() == v.size(),
"\t randomize_samples(t,u,v)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t t.size(): " << t.size()
<< "\n\t u.size(): " << u.size()
<< "\n\t v.size(): " << v.size()
);
long n = t.size()-1;
while (n > 0)
{
// pick a random index to swap into t[n]
const unsigned long idx = r.get_random_32bit_number()%(n+1);
// swap our randomly selected index into the n position
exchange(t[idx], t[n]);
exchange(u[idx], u[n]);
exchange(v[idx], v[n]);
--n;
}
}
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U,
typename V
>
typename disable_if<is_rand<V>,void>::type randomize_samples (
T& t,
U& u,
V& v
)
{
rand r;
randomize_samples(t,u,v,r);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U,
typename rand_type
>
typename enable_if_c<is_matrix<T>::value && is_rand<rand_type>::value,void>::type randomize_samples (
T& t,
U& u,
rand_type& r
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_vector(t) && is_vector(u) && u.size() == t.size(),
"\t randomize_samples(t,u)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t t.size(): " << t.size()
<< "\n\t u.size(): " << u.size()
<< "\n\t is_vector(t): " << (is_vector(t)? "true" : "false")
<< "\n\t is_vector(u): " << (is_vector(u)? "true" : "false")
);
long n = t.size()-1;
while (n > 0)
{
// pick a random index to swap into t[n]
const unsigned long idx = r.get_random_32bit_number()%(n+1);
// swap our randomly selected index into the n position
exchange(t(idx), t(n));
exchange(u(idx), u(n));
--n;
}
}
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U,
typename rand_type
>
typename disable_if_c<is_matrix<T>::value || !is_rand<rand_type>::value,void>::type randomize_samples (
T& t,
U& u,
rand_type& r
)
{
// make sure requires clause is not broken
DLIB_ASSERT(u.size() == t.size(),
"\t randomize_samples(t,u)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t t.size(): " << t.size()
<< "\n\t u.size(): " << u.size()
);
long n = t.size()-1;
while (n > 0)
{
// pick a random index to swap into t[n]
const unsigned long idx = r.get_random_32bit_number()%(n+1);
// swap our randomly selected index into the n position
exchange(t[idx], t[n]);
exchange(u[idx], u[n]);
--n;
}
}
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U
>
typename disable_if<is_rand<U>,void>::type randomize_samples (
T& t,
U& u
)
{
rand r;
randomize_samples(t,u,r);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename T,
typename rand_type
>
typename enable_if_c<is_matrix<T>::value && is_rand<rand_type>::value,void>::type randomize_samples (
T& t,
rand_type& r
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_vector(t),
"\t randomize_samples(t)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t is_vector(t): " << (is_vector(t)? "true" : "false")
);
long n = t.size()-1;
while (n > 0)
{
// pick a random index to swap into t[n]
const unsigned long idx = r.get_random_32bit_number()%(n+1);
// swap our randomly selected index into the n position
exchange(t(idx), t(n));
--n;
}
}
// ----------------------------------------------------------------------------------------
template <
typename T,
typename rand_type
>
typename disable_if_c<(is_matrix<T>::value==true)||(is_rand<rand_type>::value==false),void>::type randomize_samples (
T& t,
rand_type& r
)
{
long n = t.size()-1;
while (n > 0)
{
// pick a random index to swap into t[n]
const unsigned long idx = r.get_random_32bit_number()%(n+1);
// swap our randomly selected index into the n position
exchange(t[idx], t[n]);
--n;
}
}
// ----------------------------------------------------------------------------------------
template <
typename T
>
void randomize_samples (
T& t
)
{
rand r;
randomize_samples(t,r);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SVm_
|