This file is indexed.

/usr/include/dlib/svm/rvm_abstract.h is in libdlib-dev 18.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_RVm_ABSTRACT_
#ifdef DLIB_RVm_ABSTRACT_

#include <cmath>
#include <limits>
#include "../matrix.h"
#include "../algs.h"
#include "function.h"
#include "kernel.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename kern_type 
        >
    class rvm_trainer 
    {
        /*!
            REQUIREMENTS ON kern_type
                is a kernel function object as defined in dlib/svm/kernel_abstract.h 

            WHAT THIS OBJECT REPRESENTS
                This object implements a trainer for a relevance vector machine for 
                solving binary classification problems.

                The implementation of the RVM training algorithm used by this object is based
                on the following excellent paper:
                    Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                    for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                    of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                    Key West, FL, Jan 3-6.
        !*/

    public:
        typedef kern_type kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        rvm_trainer (
        );
        /*!
            ensures
                - This object is properly initialized and ready to be used
                  to train a relevance vector machine.
                - #get_epsilon() == 0.001
                - #get_max_iterations() == 2000
        !*/

        void set_epsilon (
            scalar_type eps
        );
        /*!
            requires
                - eps > 0
            ensures
                - #get_epsilon() == eps 
        !*/

        const scalar_type get_epsilon (
        ) const;
        /*!
            ensures
                - returns the error epsilon that determines when training should stop.
                  Generally a good value for this is 0.001.  Smaller values may result
                  in a more accurate solution but take longer to execute.
        !*/

        void set_kernel (
            const kernel_type& k
        );
        /*!
            ensures
                - #get_kernel() == k 
        !*/

        const kernel_type& get_kernel (
        ) const;
        /*!
            ensures
                - returns a copy of the kernel function in use by this object
        !*/

        unsigned long get_max_iterations (
        ) const; 
        /*!
            ensures
                - returns the maximum number of iterations the RVM optimizer is allowed to
                  run before it is required to stop and return a result.
        !*/

        void set_max_iterations (
            unsigned long max_iter
        ); 
        /*!
            ensures
                - #get_max_iterations() == max_iter
        !*/

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const;
        /*!
            requires
                - is_binary_classification_problem(x,y) == true
                - x == a matrix or something convertible to a matrix via mat().
                  Also, x should contain sample_type objects.
                - y == a matrix or something convertible to a matrix via mat().
                  Also, y should contain scalar_type objects.
            ensures
                - trains a relevance vector classifier given the training samples in x and 
                  labels in y.  
                - returns a decision function F with the following properties:
                    - if (new_x is a sample predicted have +1 label) then
                        - F(new_x) >= 0
                    - else
                        - F(new_x) < 0
            throws
                - std::bad_alloc
        !*/

        void swap (
            rvm_trainer& item
        );
        /*!
            ensures
                - swaps *this and item
        !*/

    };  

// ----------------------------------------------------------------------------------------

    template <typename K>
    void swap (
        rvm_trainer<K>& a,
        rvm_trainer<K>& b
    ) { a.swap(b); }
    /*!
        provides a global swap
    !*/

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename kern_type 
        >
    class rvm_regression_trainer
    {
        /*!
            REQUIREMENTS ON kern_type
                is a kernel function object as defined in dlib/svm/kernel_abstract.h 

            WHAT THIS OBJECT REPRESENTS
                This object implements a trainer for a relevance vector machine for 
                solving regression problems.

                The implementation of the RVM training algorithm used by this object is based
                on the following excellent paper:
                    Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                    for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                    of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                    Key West, FL, Jan 3-6.
        !*/

    public:
        typedef kern_type kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        rvm_regression_trainer (
        );
        /*!
            ensures
                - This object is properly initialized and ready to be used
                  to train a relevance vector machine.
                - #get_epsilon() == 0.001
        !*/

        void set_epsilon (
            scalar_type eps
        );
        /*!
            requires
                - eps > 0
            ensures
                - #get_epsilon() == eps 
        !*/

        const scalar_type get_epsilon (
        ) const;
        /*!
            ensures
                - returns the error epsilon that determines when training should stop.
                  Generally a good value for this is 0.001.  Smaller values may result
                  in a more accurate solution but take longer to execute.
        !*/

        void set_kernel (
            const kernel_type& k
        );
        /*!
            ensures
                - #get_kernel() == k 
        !*/

        const kernel_type& get_kernel (
        ) const;
        /*!
            ensures
                - returns a copy of the kernel function in use by this object
        !*/

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const;
        /*!
            requires
                - x == a matrix or something convertible to a matrix via mat().
                  Also, x should contain sample_type objects.
                - y == a matrix or something convertible to a matrix via mat().
                  Also, y should contain scalar_type objects.
                - is_learning_problem(x,y) == true
                - x.size() > 0
            ensures
                - trains a RVM given the training samples in x and 
                  labels in y and returns the resulting decision_function.  
            throws
                - std::bad_alloc
        !*/

        void swap (
            rvm_regression_trainer& item
        );
        /*!
            ensures
                - swaps *this and item
        !*/

    };  

// ----------------------------------------------------------------------------------------

    template <typename K>
    void swap (
        rvm_regression_trainer<K>& a,
        rvm_regression_trainer<K>& b
    ) { a.swap(b); }
    /*!
        provides a global swap
    !*/

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_RVm_ABSTRACT_