/usr/include/dlib/svm/rr_trainer.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 | // Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_RR_TRAInER_Hh_
#define DLIB_RR_TRAInER_Hh_
#include "../algs.h"
#include "function.h"
#include "kernel.h"
#include "empirical_kernel_map.h"
#include "linearly_independent_subset_finder.h"
#include "../statistics.h"
#include "rr_trainer_abstract.h"
#include <vector>
#include <iostream>
namespace dlib
{
template <
typename K
>
class rr_trainer
{
public:
typedef K kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
// You are getting a compiler error on this line because you supplied a non-linear or
// sparse kernel to the rr_trainer object. You have to use dlib::linear_kernel with this trainer.
COMPILE_TIME_ASSERT((is_same_type<K, linear_kernel<sample_type> >::value));
rr_trainer (
) :
verbose(false),
use_regression_loss(true),
lambda(0)
{
// default lambda search list
lams = matrix_cast<scalar_type>(logspace(-9, 2, 50));
}
void be_verbose (
)
{
verbose = true;
}
void be_quiet (
)
{
verbose = false;
}
void use_regression_loss_for_loo_cv (
)
{
use_regression_loss = true;
}
void use_classification_loss_for_loo_cv (
)
{
use_regression_loss = false;
}
bool will_use_regression_loss_for_loo_cv (
) const
{
return use_regression_loss;
}
const kernel_type get_kernel (
) const
{
return kernel_type();
}
void set_lambda (
scalar_type lambda_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(lambda_ >= 0,
"\t void rr_trainer::set_lambda()"
<< "\n\t lambda must be greater than or equal to 0"
<< "\n\t lambda: " << lambda
<< "\n\t this: " << this
);
lambda = lambda_;
}
const scalar_type get_lambda (
) const
{
return lambda;
}
template <typename EXP>
void set_search_lambdas (
const matrix_exp<EXP>& lambdas
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_vector(lambdas) && lambdas.size() > 0 && min(lambdas) > 0,
"\t void rr_trainer::set_search_lambdas()"
<< "\n\t lambdas must be a non-empty vector of values"
<< "\n\t is_vector(lambdas): " << is_vector(lambdas)
<< "\n\t lambdas.size(): " << lambdas.size()
<< "\n\t min(lambdas): " << min(lambdas)
<< "\n\t this: " << this
);
lams = matrix_cast<scalar_type>(lambdas);
}
const matrix<scalar_type,0,0,mem_manager_type>& get_search_lambdas (
) const
{
return lams;
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const
{
std::vector<scalar_type> temp;
scalar_type temp2;
return do_train(mat(x), mat(y), false, temp, temp2);
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
std::vector<scalar_type>& loo_values
) const
{
scalar_type temp;
return do_train(mat(x), mat(y), true, loo_values, temp);
}
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
std::vector<scalar_type>& loo_values,
scalar_type& lambda_used
) const
{
return do_train(mat(x), mat(y), true, loo_values, lambda_used);
}
private:
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> do_train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y,
const bool output_loo_values,
std::vector<scalar_type>& loo_values,
scalar_type& the_lambda
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(is_learning_problem(x,y),
"\t decision_function rr_trainer::train(x,y)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t is_vector(x): " << is_vector(x)
<< "\n\t is_vector(y): " << is_vector(y)
<< "\n\t x.size(): " << x.size()
<< "\n\t y.size(): " << y.size()
);
#ifdef ENABLE_ASSERTS
if (get_lambda() == 0 && will_use_regression_loss_for_loo_cv() == false)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(x,y),
"\t decision_function rr_trainer::train(x,y)"
<< "\n\t invalid inputs were given to this function"
);
}
#endif
typedef matrix<scalar_type,0,1,mem_manager_type> column_matrix_type;
typedef matrix<scalar_type,0,0,mem_manager_type> general_matrix_type;
const long dims = x(0).size();
/*
Notes on the solution of ridge regression
Let A = an x.size() by dims matrix which contains all the data samples.
Let I = an identity matrix
Let C = trans(A)*A
Let L = trans(A)*y
Then the optimal w is given by:
w = inv(C + lambda*I) * L
There is a trick to compute leave one out cross validation results for many different
lambda values quickly. The following paper has a detailed discussion of various
approaches:
Notes on Regularized Least Squares by Ryan M. Rifkin and Ross A. Lippert.
In the implementation of the rr_trainer I'm only using two simple equations
from the above paper.
First note that inv(C + lambda*I) can be computed for many different lambda
values in an efficient way by using an eigen decomposition of C. So we use
the fact that:
inv(C + lambda*I) == V*inv(D + lambda*I)*trans(V)
where V*D*trans(V) == C
Also, via some simple linear algebra the above paper works out that the leave one out
value for a sample x(i) is equal to the following:
Let G = inv(C + lambda*I)
let val = trans(x(i))*G*x(i);
leave one out value for sample x(i):
LOOV = (trans(w)*x(i) - y(i)*val) / (1 - val)
leave one out error for sample x(i):
LOOE = loss(y(i), LOOV)
Finally, note that we will pretend there was a 1 appended to the end of each
vector in x. We won't actually do that though because we don't want to
have to make a copy of all the samples. So throughout the following code
I have explicitly dealt with this.
*/
general_matrix_type C, tempm, G;
column_matrix_type L, tempv, w;
// compute C and L
for (long i = 0; i < x.size(); ++i)
{
C += x(i)*trans(x(i));
L += y(i)*x(i);
tempv += x(i);
}
// Account for the extra 1 that we pretend is appended to x
// Make C = [C tempv
// tempv' x.size()]
C = join_cols(join_rows(C, tempv),
join_rows(trans(tempv), uniform_matrix<scalar_type>(1,1, x.size())));
L = join_cols(L, uniform_matrix<scalar_type>(1,1, sum(y)));
eigenvalue_decomposition<general_matrix_type> eig(make_symmetric(C));
const general_matrix_type V = eig.get_pseudo_v();
const column_matrix_type D = eig.get_real_eigenvalues();
// We can save some work by pre-multiplying the x vectors by trans(V)
// and saving the result so we don't have to recompute it over and over later.
matrix<column_matrix_type,0,1,mem_manager_type > Vx;
if (lambda == 0 || output_loo_values)
{
// Save the transpose of V into a temporary because the subsequent matrix
// vector multiplies will be faster (because of better cache locality).
const general_matrix_type transV( colm(trans(V),range(0,dims-1)) );
// Remember the pretend 1 at the end of x(*). We want to multiply trans(V)*x(*)
// so to do this we pull the last column off trans(V) and store it separately.
const column_matrix_type lastV = colm(trans(V), dims);
Vx.set_size(x.size());
for (long i = 0; i < x.size(); ++i)
{
Vx(i) = transV*x(i);
Vx(i) = squared(Vx(i) + lastV);
}
}
the_lambda = lambda;
// If we need to automatically select a lambda then do so using the LOOE trick described
// above.
bool did_loov = false;
scalar_type best_looe = std::numeric_limits<scalar_type>::max();
if (lambda == 0)
{
did_loov = true;
// Compute leave one out errors for a bunch of different lambdas and pick the best one.
for (long idx = 0; idx < lams.size(); ++idx)
{
// first compute G
tempv = 1.0/(D + lams(idx));
tempm = scale_columns(V,tempv);
G = tempm*trans(V);
// compute the solution w for the current lambda
w = G*L;
// make w have the same length as the x vectors.
const scalar_type b = w(dims);
w = colm(w,0,dims);
scalar_type looe = 0;
for (long i = 0; i < x.size(); ++i)
{
// perform equivalent of: val = trans(x(i))*G*x(i);
const scalar_type val = dot(tempv, Vx(i));
const scalar_type temp = (1 - val);
scalar_type loov;
if (temp != 0)
loov = (trans(w)*x(i) + b - y(i)*val) / temp;
else
loov = 0;
looe += loss(loov, y(i));
}
// Keep track of the lambda which gave the lowest looe. If two lambdas
// have the same looe then pick the biggest lambda.
if (looe < best_looe || (looe == best_looe && lams(idx) > the_lambda))
{
best_looe = looe;
the_lambda = lams(idx);
}
}
best_looe /= x.size();
}
// Now perform the main training. That is, find w.
// first, compute G = inv(C + the_lambda*I)
tempv = 1.0/(D + the_lambda);
tempm = scale_columns(V,tempv);
G = tempm*trans(V);
w = G*L;
// make w have the same length as the x vectors.
const scalar_type b = w(dims);
w = colm(w,0,dims);
// If we haven't done this already and we are supposed to then compute the LOO error rate for
// the current lambda and store the result in best_looe.
if (output_loo_values)
{
loo_values.resize(x.size());
did_loov = true;
best_looe = 0;
for (long i = 0; i < x.size(); ++i)
{
// perform equivalent of: val = trans(x(i))*G*x(i);
const scalar_type val = dot(tempv, Vx(i));
const scalar_type temp = (1 - val);
scalar_type loov;
if (temp != 0)
loov = (trans(w)*x(i) + b - y(i)*val) / temp;
else
loov = 0;
best_looe += loss(loov, y(i));
loo_values[i] = loov;
}
best_looe /= x.size();
}
else
{
loo_values.clear();
}
if (verbose && did_loov)
{
using namespace std;
cout << "Using lambda: " << the_lambda << endl;
if (use_regression_loss)
cout << "LOO Mean Squared Error: " << best_looe << endl;
else
cout << "LOO Classification Error: " << best_looe << endl;
}
// convert w into a proper decision function
decision_function<kernel_type> df;
df.alpha.set_size(1);
df.alpha = 1;
df.basis_vectors.set_size(1);
df.basis_vectors(0) = w;
df.b = -b; // don't forget about the bias we stuck onto all the vectors
return df;
}
inline scalar_type loss (
const scalar_type& a,
const scalar_type& b
) const
{
if (use_regression_loss)
{
return (a-b)*(a-b);
}
else
{
// if a and b have the same sign then no loss
if (a*b >= 0)
return 0;
else
return 1;
}
}
/*!
CONVENTION
- get_lambda() == lambda
- get_kernel() == kernel_type()
- will_use_regression_loss_for_loo_cv() == use_regression_loss
- get_search_lambdas() == lams
!*/
bool verbose;
bool use_regression_loss;
scalar_type lambda;
matrix<scalar_type,0,0,mem_manager_type> lams;
};
}
#endif // DLIB_RR_TRAInER_Hh_
|