This file is indexed.

/usr/include/dlib/svm/roc_trainer.h is in libdlib-dev 18.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// Copyright (C) 2009  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_ROC_TRAINEr_H_
#define DLIB_ROC_TRAINEr_H_

#include "roc_trainer_abstract.h"
#include "../algs.h"
#include <limits>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename trainer_type 
        >
    class roc_trainer_type
    {
    public:
        typedef typename trainer_type::kernel_type kernel_type;
        typedef typename trainer_type::scalar_type scalar_type;
        typedef typename trainer_type::sample_type sample_type;
        typedef typename trainer_type::mem_manager_type mem_manager_type;
        typedef typename trainer_type::trained_function_type trained_function_type;

        roc_trainer_type (
        ) : desired_accuracy(0), class_selection(0){}

        roc_trainer_type (
            const trainer_type& trainer_,
            const scalar_type& desired_accuracy_,
            const scalar_type& class_selection_
        ) : trainer(trainer_), desired_accuracy(desired_accuracy_), class_selection(class_selection_) 
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(0 <= desired_accuracy && desired_accuracy <= 1 &&
                         (class_selection == -1 || class_selection == +1), 
                        "\t roc_trainer_type::roc_trainer_type()"
                        << "\n\t invalid inputs were given to this function"
                        << "\n\t desired_accuracy: " << desired_accuracy 
                        << "\n\t class_selection:  " << class_selection 
                        );
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const trained_function_type train (
            const in_sample_vector_type& samples,
            const in_scalar_vector_type& labels
        ) const 
        /*!
            requires
                - is_binary_classification_problem(samples, labels) == true
        !*/
        { 
            // make sure requires clause is not broken
            DLIB_ASSERT(is_binary_classification_problem(samples, labels), 
                        "\t roc_trainer_type::train()"
                        << "\n\t invalid inputs were given to this function"
                        );


            return do_train(mat(samples), mat(labels));
        }

    private:

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const trained_function_type do_train (
            const in_sample_vector_type& samples,
            const in_scalar_vector_type& labels
        ) const 
        { 
            trained_function_type df = trainer.train(samples, labels);

            // clear out the old bias
            df.b = 0;

            // obtain all the scores from the df using all the class_selection labeled samples
            std::vector<double> scores;
            for (long i = 0; i < samples.size(); ++i)
            {
                if (labels(i) == class_selection)
                    scores.push_back(df(samples(i)));
            }

            if (class_selection == +1)
                std::sort(scores.rbegin(), scores.rend());
            else
                std::sort(scores.begin(), scores.end());

            // now pick out the index that gives us the desired accuracy with regards to selected class 
            unsigned long idx = static_cast<unsigned long>(desired_accuracy*scores.size() + 0.5);
            if (idx >= scores.size())
                idx = scores.size()-1;

            df.b = scores[idx];

            // In this case add a very small extra amount to the bias so that all the samples
            // with the class_selection label are classified correctly.
            if (desired_accuracy == 1)
            {
                if (class_selection == +1)
                    df.b -= std::numeric_limits<scalar_type>::epsilon()*df.b;
                else
                    df.b += std::numeric_limits<scalar_type>::epsilon()*df.b;
            }

            return df;
        }

        trainer_type trainer;
        scalar_type desired_accuracy;
        scalar_type class_selection;
    }; 

// ----------------------------------------------------------------------------------------

    template <
        typename trainer_type
        >
    const roc_trainer_type<trainer_type> roc_c1_trainer (
        const trainer_type& trainer,
        const typename trainer_type::scalar_type& desired_accuracy
    ) { return roc_trainer_type<trainer_type>(trainer, desired_accuracy, +1); }

// ----------------------------------------------------------------------------------------

    template <
        typename trainer_type
        >
    const roc_trainer_type<trainer_type> roc_c2_trainer (
        const trainer_type& trainer,
        const typename trainer_type::scalar_type& desired_accuracy
    ) { return roc_trainer_type<trainer_type>(trainer, desired_accuracy, -1); }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_ROC_TRAINEr_H_