This file is indexed.

/usr/include/dlib/svm/reduced.h is in libdlib-dev 18.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_REDUCEd_TRAINERS_
#define DLIB_REDUCEd_TRAINERS_

#include "reduced_abstract.h"
#include "../matrix.h"
#include "../algs.h"
#include "function.h"
#include "kernel.h"
#include "kcentroid.h"
#include "linearly_independent_subset_finder.h"
#include "../optimization.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename trainer_type 
        >
    class reduced_decision_function_trainer
    {
    public:
        typedef typename trainer_type::kernel_type kernel_type;
        typedef typename trainer_type::scalar_type scalar_type;
        typedef typename trainer_type::sample_type sample_type;
        typedef typename trainer_type::mem_manager_type mem_manager_type;
        typedef typename trainer_type::trained_function_type trained_function_type;

        reduced_decision_function_trainer (
        ) :num_bv(0) {}

        reduced_decision_function_trainer (
            const trainer_type& trainer_,
            const unsigned long num_sb_ 
        ) :
            trainer(trainer_),
            num_bv(num_sb_)
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(num_bv > 0,
                        "\t reduced_decision_function_trainer()"
                        << "\n\t you have given invalid arguments to this function"
                        << "\n\t num_bv: " << num_bv 
            );
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(num_bv > 0,
                        "\t reduced_decision_function_trainer::train(x,y)"
                        << "\n\t You have tried to use an uninitialized version of this object"
                        << "\n\t num_bv: " << num_bv );
            return do_train(mat(x), mat(y));
        }

    private:

    // ------------------------------------------------------------------------------------

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            // get the decision function object we are going to try and approximate
            const decision_function<kernel_type>& dec_funct = trainer.train(x,y);
            
            // now find a linearly independent subset of the training points of num_bv points.
            linearly_independent_subset_finder<kernel_type> lisf(dec_funct.kernel_function, num_bv);
            fill_lisf(lisf, x);

            // The next few statements just find the best weights with which to approximate 
            // the dec_funct object with the smaller set of vectors in the lisf dictionary.  This
            // is really just a simple application of some linear algebra.  For the details 
            // see page 554 of Learning with kernels by Scholkopf and Smola where they talk 
            // about "Optimal Expansion Coefficients."

            const kernel_type kern(dec_funct.kernel_function);

            matrix<scalar_type,0,1,mem_manager_type> alpha;

            alpha = lisf.get_inv_kernel_marix()*(kernel_matrix(kern,lisf,dec_funct.basis_vectors)*dec_funct.alpha);

            decision_function<kernel_type> new_df(alpha, 
                                                  0,
                                                  kern, 
                                                  lisf.get_dictionary());

            // now we have to figure out what the new bias should be.  It might be a little
            // different since we just messed with all the weights and vectors.
            double bias = 0;
            for (long i = 0; i < x.nr(); ++i)
            {
                bias += new_df(x(i)) - dec_funct(x(i));
            }
            
            new_df.b = bias/x.nr();

            return new_df;
        }

    // ------------------------------------------------------------------------------------

        trainer_type trainer;
        unsigned long num_bv; 


    }; // end of class reduced_decision_function_trainer

    template <typename trainer_type>
    const reduced_decision_function_trainer<trainer_type> reduced (
        const trainer_type& trainer,
        const unsigned long num_bv
    )
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(num_bv > 0,
                    "\tconst reduced_decision_function_trainer reduced()"
                    << "\n\t you have given invalid arguments to this function"
                    << "\n\t num_bv: " << num_bv 
        );

        return reduced_decision_function_trainer<trainer_type>(trainer, num_bv);
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    namespace red_impl
    {

    // ------------------------------------------------------------------------------------

        template <typename kernel_type>
        class objective
        {
            /*
                This object represents the objective function we will try to
                minimize in approximate_distance_function().  

                The objective is the distance, in kernel induced feature space, between
                the original distance function and the approximated version.

            */
            typedef typename kernel_type::scalar_type scalar_type;
            typedef typename kernel_type::sample_type sample_type;
            typedef typename kernel_type::mem_manager_type mem_manager_type;
        public:
            objective(
                const distance_function<kernel_type>& dist_funct_,
                matrix<scalar_type,0,1,mem_manager_type>& b_,
                matrix<sample_type,0,1,mem_manager_type>& out_vectors_
            ) :
                dist_funct(dist_funct_),
                b(b_),
                out_vectors(out_vectors_)
            {
            }

            const matrix<scalar_type, 0, 1, mem_manager_type> state_to_vector (
            ) const
            /*!
                ensures
                    - returns a vector that contains all the information necessary to
                      reproduce the current state of the approximated distance function
            !*/
            {
                matrix<scalar_type, 0, 1, mem_manager_type> z(b.nr() + out_vectors.size()*out_vectors(0).nr());
                long i = 0;
                for (long j = 0; j < b.nr(); ++j)
                {
                    z(i) = b(j);
                    ++i;
                }

                for (long j = 0; j < out_vectors.size(); ++j)
                {
                    for (long k = 0; k < out_vectors(j).size(); ++k)
                    {
                        z(i) = out_vectors(j)(k);
                        ++i;
                    }
                }
                return z;
            }


            void vector_to_state (
                const matrix<scalar_type, 0, 1, mem_manager_type>& z
            ) const
            /*!
                requires
                    - z came from the state_to_vector() function or has a compatible format
                ensures
                    - loads the vector z into the state variables of the approximate
                      distance function (i.e. b and out_vectors)
            !*/
            {
                long i = 0;
                for (long j = 0; j < b.nr(); ++j)
                {
                    b(j) = z(i);
                    ++i;
                }

                for (long j = 0; j < out_vectors.size(); ++j)
                {
                    for (long k = 0; k < out_vectors(j).size(); ++k)
                    {
                        out_vectors(j)(k) = z(i);
                        ++i;
                    }
                }
            }

            double operator() (
                const matrix<scalar_type, 0, 1, mem_manager_type>& z
            ) const
            /*!
                ensures
                    - loads the current approximate distance function with z
                    - returns the distance between the original distance function
                      and the approximate one.
            !*/
            {
                vector_to_state(z);
                const kernel_type k(dist_funct.get_kernel());

                double temp = 0;
                for (long i = 0; i < out_vectors.size(); ++i)
                {
                    for (long j = 0; j < dist_funct.get_basis_vectors().nr(); ++j)
                    {
                        temp -= b(i)*dist_funct.get_alpha()(j)*k(out_vectors(i), dist_funct.get_basis_vectors()(j));
                    }
                }

                temp *= 2;

                for (long i = 0; i < out_vectors.size(); ++i)
                {
                    for (long j = 0; j < out_vectors.size(); ++j)
                    {
                        temp += b(i)*b(j)*k(out_vectors(i), out_vectors(j));
                    }
                }

                return temp + dist_funct.get_squared_norm();
            }

        private:

            const distance_function<kernel_type>& dist_funct;
            matrix<scalar_type,0,1,mem_manager_type>& b;
            matrix<sample_type,0,1,mem_manager_type>& out_vectors;

        };

    // ------------------------------------------------------------------------------------

        template <typename kernel_type>
        class objective_derivative
        {
            /*!
                This object represents the derivative of the objective object
            !*/
            typedef typename kernel_type::scalar_type scalar_type;
            typedef typename kernel_type::sample_type sample_type;
            typedef typename kernel_type::mem_manager_type mem_manager_type;
        public:


            objective_derivative(
                const distance_function<kernel_type>& dist_funct_,
                matrix<scalar_type,0,1,mem_manager_type>& b_,
                matrix<sample_type,0,1,mem_manager_type>& out_vectors_
            ) :
                dist_funct(dist_funct_),
                b(b_),
                out_vectors(out_vectors_)
            {
            }

            void vector_to_state (
                const matrix<scalar_type, 0, 1, mem_manager_type>& z
            ) const
            /*!
                requires
                    - z came from the state_to_vector() function or has a compatible format
                ensures
                    - loads the vector z into the state variables of the approximate
                      distance function (i.e. b and out_vectors)
            !*/
            {
                long i = 0;
                for (long j = 0; j < b.nr(); ++j)
                {
                    b(j) = z(i);
                    ++i;
                }

                for (long j = 0; j < out_vectors.size(); ++j)
                {
                    for (long k = 0; k < out_vectors(j).size(); ++k)
                    {
                        out_vectors(j)(k) = z(i);
                        ++i;
                    }
                }
            }

            const matrix<scalar_type,0,1,mem_manager_type>& operator() (
                const matrix<scalar_type, 0, 1, mem_manager_type>& z
            ) const
            /*!
                ensures
                    - loads the current approximate distance function with z
                    - returns the derivative of the distance between the original 
                      distance function and the approximate one.
            !*/
            {
                vector_to_state(z);
                res.set_size(z.nr());
                set_all_elements(res,0);
                const kernel_type k(dist_funct.get_kernel());
                const kernel_derivative<kernel_type> K_der(k);

                // first compute the gradient for the beta weights
                for (long i = 0; i < out_vectors.size(); ++i)
                {
                    for (long j = 0; j < out_vectors.size(); ++j)
                    {
                        res(i) += b(j)*k(out_vectors(i), out_vectors(j)); 
                    }
                }
                for (long i = 0; i < out_vectors.size(); ++i)
                {
                    for (long j = 0; j < dist_funct.get_basis_vectors().size(); ++j)
                    {
                        res(i) -= dist_funct.get_alpha()(j)*k(out_vectors(i), dist_funct.get_basis_vectors()(j)); 
                    }
                }


                // now compute the gradient of the actual vectors that go into the kernel functions
                long pos = out_vectors.size();
                const long num = out_vectors(0).nr();
                temp.set_size(num,1);
                for (long i = 0; i < out_vectors.size(); ++i)
                {
                    set_all_elements(temp,0);
                    for (long j = 0; j < out_vectors.size(); ++j)
                    {
                        temp += b(j)*K_der(out_vectors(j), out_vectors(i));
                    }
                    for (long j = 0; j < dist_funct.get_basis_vectors().nr(); ++j)
                    {
                        temp -= dist_funct.get_alpha()(j)*K_der(dist_funct.get_basis_vectors()(j), out_vectors(i) );
                    }

                    // store the gradient for out_vectors(i) into result in the proper spot
                    set_subm(res,pos,0,num,1) = b(i)*temp;
                    pos += num;
                }


                res *= 2;
                return res;
            }

        private:

            mutable matrix<scalar_type, 0, 1, mem_manager_type> res;
            mutable sample_type temp;

            const distance_function<kernel_type>& dist_funct;
            matrix<scalar_type,0,1,mem_manager_type>& b;
            matrix<sample_type,0,1,mem_manager_type>& out_vectors;

        };

    // ------------------------------------------------------------------------------------

    }

    template <
        typename K,
        typename stop_strategy_type,
        typename T
        >
    distance_function<K> approximate_distance_function (
        stop_strategy_type stop_strategy,
        const distance_function<K>& target,
        const T& starting_basis
    )
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(target.get_basis_vectors().size() > 0 &&
                    starting_basis.size() > 0,
                    "\t  distance_function approximate_distance_function()"
                    << "\n\t Invalid inputs were given to this function."
                    << "\n\t target.get_basis_vectors().size(): " << target.get_basis_vectors().size() 
                    << "\n\t starting_basis.size():             " << starting_basis.size() 
        );

        using namespace red_impl;
        // The next few statements just find the best weights with which to approximate 
        // the target object with the set of basis vectors in starting_basis.  This
        // is really just a simple application of some linear algebra.  For the details 
        // see page 554 of Learning with kernels by Scholkopf and Smola where they talk 
        // about "Optimal Expansion Coefficients."

        const K kern(target.get_kernel());
        typedef typename K::scalar_type scalar_type;
        typedef typename K::sample_type sample_type;
        typedef typename K::mem_manager_type mem_manager_type;

        matrix<scalar_type,0,1,mem_manager_type> beta;

        // Now we compute the fist approximate distance function.  
        beta = pinv(kernel_matrix(kern,starting_basis)) *
            (kernel_matrix(kern,starting_basis,target.get_basis_vectors())*target.get_alpha());
        matrix<sample_type,0,1,mem_manager_type> out_vectors(mat(starting_basis));


        // Now setup to do a global optimization of all the parameters in the approximate 
        // distance function.  
        const objective<K> obj(target, beta, out_vectors);
        const objective_derivative<K> obj_der(target, beta, out_vectors);
        matrix<scalar_type,0,1,mem_manager_type> opt_starting_point(obj.state_to_vector());


        // perform a full optimization of all the parameters (i.e. both beta and the basis vectors together)
        find_min(lbfgs_search_strategy(20),
                 stop_strategy,
                 obj, obj_der, opt_starting_point, 0); 

        // now make sure that the final optimized value is loaded into the beta and
        // out_vectors matrices
        obj.vector_to_state(opt_starting_point);

        // Do a final reoptimization of beta just to make sure it is optimal given the new
        // set of basis vectors.
        beta = pinv(kernel_matrix(kern,out_vectors))*(kernel_matrix(kern,out_vectors,target.get_basis_vectors())*target.get_alpha());

        // It is possible that some of the beta weights will be very close to zero.  Lets remove
        // the basis vectors with these essentially zero weights.
        const scalar_type eps = max(abs(beta))*std::numeric_limits<scalar_type>::epsilon();
        for (long i = 0; i < beta.size(); ++i)
        {
            // if beta(i) is zero (but leave at least one beta no matter what)
            if (std::abs(beta(i)) < eps && beta.size() > 1)
            {
                beta = remove_row(beta, i);
                out_vectors = remove_row(out_vectors, i);
                --i;
            }
        }

        return distance_function<K>(beta, kern, out_vectors);
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename trainer_type 
        >
    class reduced_decision_function_trainer2
    {
    public:
        typedef typename trainer_type::kernel_type kernel_type;
        typedef typename trainer_type::scalar_type scalar_type;
        typedef typename trainer_type::sample_type sample_type;
        typedef typename trainer_type::mem_manager_type mem_manager_type;
        typedef typename trainer_type::trained_function_type trained_function_type;

        reduced_decision_function_trainer2 () : num_bv(0) {}
        reduced_decision_function_trainer2 (
            const trainer_type& trainer_,
            const long num_sb_,
            const double eps_ = 1e-3
        ) :
            trainer(trainer_),
            num_bv(num_sb_),
            eps(eps_)
        {
            COMPILE_TIME_ASSERT(is_matrix<sample_type>::value);

            // make sure requires clause is not broken
            DLIB_ASSERT(num_bv > 0 && eps > 0,
                        "\t reduced_decision_function_trainer2()"
                        << "\n\t you have given invalid arguments to this function"
                        << "\n\t num_bv: " << num_bv 
                        << "\n\t eps:    " << eps 
            );
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(num_bv > 0,
                        "\t reduced_decision_function_trainer2::train(x,y)"
                        << "\n\t You have tried to use an uninitialized version of this object"
                        << "\n\t num_bv: " << num_bv );
            return do_train(mat(x), mat(y));
        }

    private:

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            // get the decision function object we are going to try and approximate
            const decision_function<kernel_type>& dec_funct = trainer.train(x,y);
            const kernel_type kern(dec_funct.kernel_function);
            
            // now find a linearly independent subset of the training points of num_bv points.
            linearly_independent_subset_finder<kernel_type> lisf(kern, num_bv);
            fill_lisf(lisf,x);

            distance_function<kernel_type> approx, target;
            target = dec_funct;
            approx = approximate_distance_function(objective_delta_stop_strategy(eps), target, lisf);

            decision_function<kernel_type> new_df(approx.get_alpha(), 
                                                  0,
                                                  kern, 
                                                  approx.get_basis_vectors());

            // now we have to figure out what the new bias should be.  It might be a little
            // different since we just messed with all the weights and vectors.
            double bias = 0;
            for (long i = 0; i < x.nr(); ++i)
            {
                bias += new_df(x(i)) - dec_funct(x(i));
            }
            
            new_df.b = bias/x.nr();

            return new_df;

        }

    // ------------------------------------------------------------------------------------

        trainer_type trainer;
        long num_bv;
        double eps;


    }; // end of class reduced_decision_function_trainer2

    template <typename trainer_type>
    const reduced_decision_function_trainer2<trainer_type> reduced2 (
        const trainer_type& trainer,
        const long num_bv,
        double eps = 1e-3
    )
    {
        COMPILE_TIME_ASSERT(is_matrix<typename trainer_type::sample_type>::value);

        // make sure requires clause is not broken
        DLIB_ASSERT(num_bv > 0 && eps > 0,
                    "\tconst reduced_decision_function_trainer2 reduced2()"
                    << "\n\t you have given invalid arguments to this function"
                    << "\n\t num_bv: " << num_bv 
                    << "\n\t eps:    " << eps 
        );

        return reduced_decision_function_trainer2<trainer_type>(trainer, num_bv, eps);
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

}

#endif // DLIB_REDUCEd_TRAINERS_