/usr/include/dlib/svm/krls.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_KRLs_
#define DLIB_KRLs_
#include <vector>
#include "krls_abstract.h"
#include "../matrix.h"
#include "function.h"
#include "../std_allocator.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <typename kernel_type>
class krls
{
/*!
This is an implementation of the kernel recursive least squares algorithm described in the paper:
The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
!*/
public:
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
explicit krls (
const kernel_type& kernel_,
scalar_type tolerance_ = 0.001,
unsigned long max_dictionary_size_ = 1000000
) :
kernel(kernel_),
my_tolerance(tolerance_),
my_max_dictionary_size(max_dictionary_size_)
{
// make sure requires clause is not broken
DLIB_ASSERT(tolerance_ >= 0,
"\tkrls::krls()"
<< "\n\t You have to give a positive tolerance"
<< "\n\t this: " << this
<< "\n\t tolerance: " << tolerance_
);
clear_dictionary();
}
scalar_type tolerance() const
{
return my_tolerance;
}
unsigned long max_dictionary_size() const
{
return my_max_dictionary_size;
}
const kernel_type& get_kernel (
) const
{
return kernel;
}
void clear_dictionary ()
{
dictionary.clear();
alpha.clear();
K_inv.set_size(0,0);
K.set_size(0,0);
P.set_size(0,0);
}
scalar_type operator() (
const sample_type& x
) const
{
scalar_type temp = 0;
for (unsigned long i = 0; i < alpha.size(); ++i)
temp += alpha[i]*kern(dictionary[i], x);
return temp;
}
void train (
const sample_type& x,
scalar_type y
)
{
const scalar_type kx = kern(x,x);
if (alpha.size() == 0)
{
// just ignore this sample if it is the zero vector (or really close to being zero)
if (std::abs(kx) > std::numeric_limits<scalar_type>::epsilon())
{
// set initial state since this is the first training example we have seen
K_inv.set_size(1,1);
K_inv(0,0) = 1/kx;
K.set_size(1,1);
K(0,0) = kx;
alpha.push_back(y/kx);
dictionary.push_back(x);
P.set_size(1,1);
P(0,0) = 1;
}
}
else
{
// fill in k
k.set_size(alpha.size());
for (long r = 0; r < k.nr(); ++r)
k(r) = kern(x,dictionary[r]);
// compute the error we would have if we approximated the new x sample
// with the dictionary. That is, do the ALD test from the KRLS paper.
a = K_inv*k;
scalar_type delta = kx - trans(k)*a;
// if this new vector isn't approximately linearly dependent on the vectors
// in our dictionary.
if (delta > my_tolerance)
{
if (dictionary.size() >= my_max_dictionary_size)
{
// We need to remove one of the old members of the dictionary before
// we proceed with adding a new one. So remove the oldest one.
remove_dictionary_vector(0);
// recompute these guys since they were computed with the old
// kernel matrix
k = remove_row(k,0);
a = K_inv*k;
delta = kx - trans(k)*a;
}
// add x to the dictionary
dictionary.push_back(x);
// update K_inv by computing the new one in the temp matrix (equation 3.14)
matrix<scalar_type,0,0,mem_manager_type> temp(K_inv.nr()+1, K_inv.nc()+1);
// update the middle part of the matrix
set_subm(temp, get_rect(K_inv)) = K_inv + a*trans(a)/delta;
// update the right column of the matrix
set_subm(temp, 0, K_inv.nr(),K_inv.nr(),1) = -a/delta;
// update the bottom row of the matrix
set_subm(temp, K_inv.nr(), 0, 1, K_inv.nr()) = trans(-a/delta);
// update the bottom right corner of the matrix
temp(K_inv.nr(), K_inv.nc()) = 1/delta;
// put temp into K_inv
temp.swap(K_inv);
// update K (the kernel matrix)
temp.set_size(K.nr()+1, K.nc()+1);
set_subm(temp, get_rect(K)) = K;
// update the right column of the matrix
set_subm(temp, 0, K.nr(),K.nr(),1) = k;
// update the bottom row of the matrix
set_subm(temp, K.nr(), 0, 1, K.nr()) = trans(k);
temp(K.nr(), K.nc()) = kx;
// put temp into K
temp.swap(K);
// Now update the P matrix (equation 3.15)
temp.set_size(P.nr()+1, P.nc()+1);
set_subm(temp, get_rect(P)) = P;
// initialize the new sides of P
set_rowm(temp,P.nr()) = 0;
set_colm(temp,P.nr()) = 0;
temp(P.nr(), P.nc()) = 1;
temp.swap(P);
// now update the alpha vector (equation 3.16)
const scalar_type k_a = (y-trans(k)*mat(alpha))/delta;
for (unsigned long i = 0; i < alpha.size(); ++i)
{
alpha[i] -= a(i)*k_a;
}
alpha.push_back(k_a);
}
else
{
q = P*a/(1+trans(a)*P*a);
// update P (equation 3.12)
temp_matrix = trans(a)*P;
P -= q*temp_matrix;
// update the alpha vector (equation 3.13)
const scalar_type k_a = y-trans(k)*mat(alpha);
for (unsigned long i = 0; i < alpha.size(); ++i)
{
alpha[i] += (K_inv*q*k_a)(i);
}
}
}
}
void swap (
krls& item
)
{
exchange(kernel, item.kernel);
dictionary.swap(item.dictionary);
alpha.swap(item.alpha);
K_inv.swap(item.K_inv);
K.swap(item.K);
P.swap(item.P);
exchange(my_tolerance, item.my_tolerance);
q.swap(item.q);
a.swap(item.a);
k.swap(item.k);
temp_matrix.swap(item.temp_matrix);
exchange(my_max_dictionary_size, item.my_max_dictionary_size);
}
unsigned long dictionary_size (
) const { return dictionary.size(); }
decision_function<kernel_type> get_decision_function (
) const
{
return decision_function<kernel_type>(
mat(alpha),
-sum(mat(alpha))*tau,
kernel,
mat(dictionary)
);
}
friend void serialize(const krls& item, std::ostream& out)
{
serialize(item.kernel, out);
serialize(item.dictionary, out);
serialize(item.alpha, out);
serialize(item.K_inv, out);
serialize(item.K, out);
serialize(item.P, out);
serialize(item.my_tolerance, out);
serialize(item.my_max_dictionary_size, out);
}
friend void deserialize(krls& item, std::istream& in)
{
deserialize(item.kernel, in);
deserialize(item.dictionary, in);
deserialize(item.alpha, in);
deserialize(item.K_inv, in);
deserialize(item.K, in);
deserialize(item.P, in);
deserialize(item.my_tolerance, in);
deserialize(item.my_max_dictionary_size, in);
}
private:
inline scalar_type kern (const sample_type& m1, const sample_type& m2) const
{
return kernel(m1,m2) + tau;
}
void remove_dictionary_vector (
long i
)
/*!
requires
- 0 <= i < dictionary.size()
ensures
- #dictionary.size() == dictionary.size() - 1
- #alpha.size() == alpha.size() - 1
- updates the K_inv matrix so that it is still a proper inverse of the
kernel matrix
- also removes the necessary row and column from the K matrix
- uses the this->a variable so after this function runs that variable
will contain a different value.
!*/
{
// remove the dictionary vector
dictionary.erase(dictionary.begin()+i);
// remove the i'th vector from the inverse kernel matrix. This formula is basically
// just the reverse of the way K_inv is updated by equation 3.14 during normal training.
K_inv = removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i);
// now compute the updated alpha values to take account that we just removed one of
// our dictionary vectors
a = (K_inv*remove_row(K,i)*mat(alpha));
// now copy over the new alpha values
alpha.resize(alpha.size()-1);
for (unsigned long k = 0; k < alpha.size(); ++k)
{
alpha[k] = a(k);
}
// update the P matrix as well
P = removerc(P,i,i);
// update the K matrix as well
K = removerc(K,i,i);
}
kernel_type kernel;
typedef std_allocator<sample_type, mem_manager_type> alloc_sample_type;
typedef std_allocator<scalar_type, mem_manager_type> alloc_scalar_type;
typedef std::vector<sample_type,alloc_sample_type> dictionary_vector_type;
typedef std::vector<scalar_type,alloc_scalar_type> alpha_vector_type;
dictionary_vector_type dictionary;
alpha_vector_type alpha;
matrix<scalar_type,0,0,mem_manager_type> K_inv;
matrix<scalar_type,0,0,mem_manager_type> K;
matrix<scalar_type,0,0,mem_manager_type> P;
scalar_type my_tolerance;
unsigned long my_max_dictionary_size;
// temp variables here just so we don't have to reconstruct them over and over. Thus,
// they aren't really part of the state of this object.
matrix<scalar_type,0,1,mem_manager_type> q;
matrix<scalar_type,0,1,mem_manager_type> a;
matrix<scalar_type,0,1,mem_manager_type> k;
matrix<scalar_type,1,0,mem_manager_type> temp_matrix;
const static scalar_type tau;
};
template <typename kernel_type>
const typename kernel_type::scalar_type krls<kernel_type>::tau = static_cast<typename kernel_type::scalar_type>(0.01);
// ----------------------------------------------------------------------------------------
template <typename kernel_type>
void swap(krls<kernel_type>& a, krls<kernel_type>& b)
{ a.swap(b); }
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_KRLs_
|