/usr/include/dlib/svm/feature_ranking.h is in libdlib-dev 18.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | // Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_KERNEL_FEATURE_RANKINg_H_
#define DLIB_KERNEL_FEATURE_RANKINg_H_
#include <vector>
#include <limits>
#include "feature_ranking_abstract.h"
#include "kcentroid.h"
#include "../optimization.h"
#include "../statistics.h"
#include <iostream>
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename kernel_type,
typename sample_matrix_type,
typename label_matrix_type
>
matrix<typename kernel_type::scalar_type,0,2,typename kernel_type::mem_manager_type> rank_features_impl (
const kcentroid<kernel_type>& kc,
const sample_matrix_type& samples,
const label_matrix_type& labels
)
{
/*
This function ranks features by doing recursive feature elimination
*/
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::mem_manager_type mm;
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(samples, labels) == true,
"\tmatrix rank_features()"
<< "\n\t you have given invalid arguments to this function"
);
matrix<scalar_type,0,2,mm> results(samples(0).nr(), 2);
matrix<scalar_type,sample_matrix_type::type::NR,1,mm> mask(samples(0).nr());
set_all_elements(mask,1);
// figure out what the separation is between the two centroids when all the features are
// present.
scalar_type first_separation;
{
kcentroid<kernel_type> c1(kc);
kcentroid<kernel_type> c2(kc);
// find the centers of each class
for (long s = 0; s < samples.size(); ++s)
{
if (labels(s) < 0)
{
c1.train(samples(s));
}
else
{
c2.train(samples(s));
}
}
first_separation = c1(c2);
}
using namespace std;
for (long i = results.nr()-1; i >= 0; --i)
{
long worst_feature_idx = 0;
scalar_type worst_feature_score = -std::numeric_limits<scalar_type>::infinity();
// figure out which feature to remove next
for (long j = 0; j < mask.size(); ++j)
{
// skip features we have already removed
if (mask(j) == 0)
continue;
kcentroid<kernel_type> c1(kc);
kcentroid<kernel_type> c2(kc);
// temporarily remove this feature from the working set of features
mask(j) = 0;
// find the centers of each class
for (long s = 0; s < samples.size(); ++s)
{
if (labels(s) < 0)
{
c1.train(pointwise_multiply(samples(s),mask));
}
else
{
c2.train(pointwise_multiply(samples(s),mask));
}
}
// find the distance between the two centroids and use that
// as the score
const double score = c1(c2);
if (score > worst_feature_score)
{
worst_feature_score = score;
worst_feature_idx = j;
}
// add this feature back to the working set of features
mask(j) = 1;
}
// now that we know what the next worst feature is record it
mask(worst_feature_idx) = 0;
results(i,0) = worst_feature_idx;
results(i,1) = worst_feature_score;
}
// now normalize the results
const scalar_type max_separation = std::max(max(colm(results,1)), first_separation);
set_colm(results,1) = colm(results,1)/max_separation;
for (long r = 0; r < results.nr()-1; ++r)
{
results(r,1) = results(r+1,1);
}
results(results.nr()-1,1) = first_separation/max_separation;
return results;
}
// ----------------------------------------------------------------------------------------
template <
typename kernel_type,
typename sample_matrix_type,
typename label_matrix_type
>
matrix<typename kernel_type::scalar_type,0,2,typename kernel_type::mem_manager_type> rank_features (
const kcentroid<kernel_type>& kc,
const sample_matrix_type& samples,
const label_matrix_type& labels
)
{
return rank_features_impl(kc, mat(samples), mat(labels));
}
// ----------------------------------------------------------------------------------------
template <
typename kernel_type,
typename sample_matrix_type,
typename label_matrix_type
>
matrix<typename kernel_type::scalar_type,0,2,typename kernel_type::mem_manager_type> rank_features_impl (
const kcentroid<kernel_type>& kc,
const sample_matrix_type& samples,
const label_matrix_type& labels,
const long num_features
)
{
/*
This function ranks features by doing recursive feature addition
*/
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::mem_manager_type mm;
// make sure requires clause is not broken
DLIB_ASSERT(is_binary_classification_problem(samples, labels) == true,
"\tmatrix rank_features()"
<< "\n\t you have given invalid arguments to this function"
);
DLIB_ASSERT(0 < num_features && num_features <= samples(0).nr(),
"\tmatrix rank_features()"
<< "\n\t you have given invalid arguments to this function"
<< "\n\t num_features: " << num_features
<< "\n\t samples(0).nr(): " << samples(0).nr()
);
matrix<scalar_type,0,2,mm> results(num_features, 2);
matrix<scalar_type,sample_matrix_type::type::NR,1,mm> mask(samples(0).nr());
set_all_elements(mask,0);
using namespace std;
for (long i = 0; i < results.nr(); ++i)
{
long best_feature_idx = 0;
scalar_type best_feature_score = -std::numeric_limits<scalar_type>::infinity();
// figure out which feature to add next
for (long j = 0; j < mask.size(); ++j)
{
// skip features we have already added
if (mask(j) == 1)
continue;
kcentroid<kernel_type> c1(kc);
kcentroid<kernel_type> c2(kc);
// temporarily add this feature to the working set of features
mask(j) = 1;
// find the centers of each class
for (long s = 0; s < samples.size(); ++s)
{
if (labels(s) < 0)
{
c1.train(pointwise_multiply(samples(s),mask));
}
else
{
c2.train(pointwise_multiply(samples(s),mask));
}
}
// find the distance between the two centroids and use that
// as the score
const double score = c1(c2);
if (score > best_feature_score)
{
best_feature_score = score;
best_feature_idx = j;
}
// take this feature back out of the working set of features
mask(j) = 0;
}
// now that we know what the next best feature is record it
mask(best_feature_idx) = 1;
results(i,0) = best_feature_idx;
results(i,1) = best_feature_score;
}
// now normalize the results
set_colm(results,1) = colm(results,1)/max(colm(results,1));
return results;
}
// ----------------------------------------------------------------------------------------
template <
typename kernel_type,
typename sample_matrix_type,
typename label_matrix_type
>
matrix<typename kernel_type::scalar_type,0,2,typename kernel_type::mem_manager_type> rank_features (
const kcentroid<kernel_type>& kc,
const sample_matrix_type& samples,
const label_matrix_type& labels,
const long num_features
)
{
if (mat(samples).nr() > 0 && num_features == mat(samples)(0).nr())
{
// if we are going to rank them all then might as well do the recursive feature elimination version
return rank_features_impl(kc, mat(samples), mat(labels));
}
else
{
return rank_features_impl(kc, mat(samples), mat(labels), num_features);
}
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
namespace rank_features_helpers
{
template <
typename K,
typename sample_matrix_type,
typename label_matrix_type
>
typename K::scalar_type centroid_gap (
const kcentroid<K>& kc,
const sample_matrix_type& samples,
const label_matrix_type& labels
)
{
kcentroid<K> kc1(kc);
kcentroid<K> kc2(kc);
// toss all the samples into our kcentroids
for (long i = 0; i < samples.size(); ++i)
{
if (labels(i) > 0)
kc1.train(samples(i));
else
kc2.train(samples(i));
}
// now return the separation between the mean of these two centroids
return kc1(kc2);
}
template <
typename sample_matrix_type,
typename label_matrix_type
>
class test
{
typedef typename sample_matrix_type::type sample_type;
typedef typename sample_type::type scalar_type;
typedef typename sample_type::mem_manager_type mem_manager_type;
public:
test (
const sample_matrix_type& samples_,
const label_matrix_type& labels_,
unsigned long num_sv_,
bool verbose_
) : samples(samples_), labels(labels_), num_sv(num_sv_), verbose(verbose_)
{
}
double operator() (
double gamma
) const
{
using namespace std;
// we are doing the optimization in log space so don't forget to convert back to normal space
gamma = std::exp(gamma);
typedef radial_basis_kernel<sample_type> kernel_type;
// Make a kcentroid and find out what the gap is at the current gamma. Try to pick a reasonable
// tolerance.
const double tolerance = std::min(gamma*0.01, 0.01);
const kernel_type kern(gamma);
kcentroid<kernel_type> kc(kern, tolerance, num_sv);
scalar_type temp = centroid_gap(kc, samples, labels);
if (verbose)
{
cout << "\rChecking goodness of gamma = " << gamma << ". Goodness = "
<< temp << " " << flush;
}
return temp;
}
const sample_matrix_type& samples;
const label_matrix_type& labels;
unsigned long num_sv;
bool verbose;
};
template <
typename sample_matrix_type,
typename label_matrix_type
>
double find_gamma_with_big_centroid_gap_impl (
const sample_matrix_type& samples,
const label_matrix_type& labels,
double initial_gamma,
unsigned long num_sv,
bool verbose
)
{
using namespace std;
if (verbose)
{
cout << endl;
}
test<sample_matrix_type, label_matrix_type> funct(samples, labels, num_sv, verbose);
double best_gamma = std::log(initial_gamma);
double goodness = find_max_single_variable(funct, best_gamma, -15, 15, 1e-3, 100);
if (verbose)
{
cout << "\rBest gamma = " << std::exp(best_gamma) << ". Goodness = "
<< goodness << " " << endl;
}
return std::exp(best_gamma);
}
}
// ----------------------------------------------------------------------------------------
template <
typename sample_matrix_type,
typename label_matrix_type
>
double find_gamma_with_big_centroid_gap (
const sample_matrix_type& samples,
const label_matrix_type& labels,
double initial_gamma = 0.1,
unsigned long num_sv = 40
)
{
DLIB_ASSERT(initial_gamma > 0 && num_sv > 0 && is_binary_classification_problem(samples, labels),
"\t double find_gamma_with_big_centroid_gap()"
<< "\n\t initial_gamma: " << initial_gamma
<< "\n\t num_sv: " << num_sv
<< "\n\t is_binary_classification_problem(): " << is_binary_classification_problem(samples, labels)
);
return rank_features_helpers::find_gamma_with_big_centroid_gap_impl(mat(samples),
mat(labels),
initial_gamma,
num_sv,
false);
}
// ----------------------------------------------------------------------------------------
template <
typename sample_matrix_type,
typename label_matrix_type
>
double verbose_find_gamma_with_big_centroid_gap (
const sample_matrix_type& samples,
const label_matrix_type& labels,
double initial_gamma = 0.1,
unsigned long num_sv = 40
)
{
DLIB_ASSERT(initial_gamma > 0 && num_sv > 0 && is_binary_classification_problem(samples, labels),
"\t double verbose_find_gamma_with_big_centroid_gap()"
<< "\n\t initial_gamma: " << initial_gamma
<< "\n\t num_sv: " << num_sv
<< "\n\t is_binary_classification_problem(): " << is_binary_classification_problem(samples, labels)
);
return rank_features_helpers::find_gamma_with_big_centroid_gap_impl(mat(samples),
mat(labels),
initial_gamma,
num_sv,
true);
}
// ----------------------------------------------------------------------------------------
template <
typename vector_type
>
double compute_mean_squared_distance (
const vector_type& samples
)
{
running_stats<double> rs;
for (unsigned long i = 0; i < samples.size(); ++i)
{
for (unsigned long j = i+1; j < samples.size(); ++j)
{
rs.add(length_squared(samples[i] - samples[j]));
}
}
return rs.mean();
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_KERNEL_FEATURE_RANKINg_H_
|